Chemistry

1 billion-year-old cell contents preserved in monazite and xenotime


1.

Rasmussen, B. Early-diagenetic REE-phosphate minerals (florencite, gorceixite, crandalite and xenotime) in marine sandstone: a significant sink for oceanic phosphorus. Am. J. Sci. 296, 601–632 (1996).

2.

Alipour-Asll, M., Mirnejad, H. & Milodowski, A. E. Prevalence and paragenesis of diagenetic monazite within the higher Triassic black shales of the Marvast area, South Yazd, Iran. Min. Pet. 104, 197–210 (2012).

three.

Schopf, J. W. Microflora of the Bitter Springs Formation, Late Precambrian, Central Australia. J. Paleontol. 42, 651–688 (1968).

four.

Xiao, S., Zhang, Y. & Knoll, A. H. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorate. Nature 391, 553–558 (1998).

5.

Briggs, D. E. G., Raiswell, R., Bottrell, S. H., Hatfield, D. & Bartels, C. Controls on the pyritization of exceptionally preserved fossils: An evaluation of the decrease Devonian Hunsruck slate of Germany. Am. J. Sci. 296, 633–663 (1996).

6.

Wacey, D. et al. Enhanced mobile preservation by clay minerals in 1 billion-year-old lakes. Sci. Rep. four, 5841, https://doi.org/10.1038/srep05841 (2014).

7.

Stewart, A. D. The Torridon Group. Geol. Soc. Lon. Mem. 24, 29–46 (2002).

eight.

Ielpi, A. & Ghinassi, M. Planview fashion and palaeodrainage of Torridonian channel belts: Applecross Formation, Stoer Peninsula, Scotland. Sediment. Geol. 325, 1–16 (2015).

9.

Krabbendam, M., Bonsor, H., Horstwood, M. S. A. & Rivers, T. Monitoring the evolution of the Grenvillian foreland basin: Constraints from sedimentology and detrital zircon and rutile within the Sleat and Torridon teams, Scotland. Precamb. Res. 295, 67–89 (2017).

10.

Strother, P. Ok., Battison, L., Brasier, M. D. & Wellman, C. H. Earth’s earliest non-marine eukaryotes. Nature 473, 505–509 (2011).

11.

Battison, L. & Brasier, M. D. Remarkably preserved prokaryote and eukaryote microfossils inside 1 Ga-old lake phosphates of the Torridon Group, NW Scotland. Precamb. Res. 196–197, 204–217 (2012).

12.

Downs, R. T. & Corridor-Wallace, M. The American Mineralogist Crystal Construction Database. Am. Mineral. 88, 247–250 (2003).

13.

Strother, P. Ok. & Wellman, C. H. Paleoecology of a billion-year-old non-marine cyanobacterium from the Torridon Group and Nonesuch Formation. Paleontol. 59, 89–108 (2016).

14.

Rainbird, R. H., Cawood, P. A. & Gehrels, G. The nice Grenvillian sedimentation episode: file of supercontinent Rodinia’s meeting. [Busby, C. & Azor Perez, A. (eds)] Tectonics of Sedimentary Basins: Current Advances, pp. 583–601 (Blackwell Publishing, 2012).

15.

Rainbird, R. H. Detrital zircon geochronology and provenance of the Torridonian, NW Scotland. J. Geol. Soc. Lon. 158, 15–27 (2001).

16.

Elderfield, H., Upstill-Goddard, R. & Sholkovitz, E. R. The uncommon earth components in rivers, estuaries, and coastal seas and their significance to the composition of ocean waters. Geochim. Cosmochim. Acta 54, 971–991 (1990).

17.

Alibo, D. S. & Nozaki, Y. Uncommon earth components in seawater: Particle affiliation, shale-normalization, and Ce oxidation. Geochim. Cosmochim. Acta 63, 363–372 (1999).

18.

Hampson, M. A. Uptake of radioactivity by aquatic crops and site within the cells I. The impact of pH on the strontium-90 and yttrium-90 uptake by the inexperienced alga Ulva lactuca and the impact of secure yttrium on yttrium-90 uptake. J. Experiment. Bot. 18, 17–33 (1967).

19.

Liu, H.-H., Chen, W.-L. & Wu, J.-T. Sorption of strontium-90 and yttrium-90 by Anacystis cells. Sci. Tot. Environ. 91, 275–282 (1990).

20.

Solar, H. et al. Bioconcentration of Uncommon Earth Parts lanthanum, gadolinium and yttrium in algae (Chlorella vulgaris Beijerinck): Affect of chemical species. Chemosphere 34, 1753–1760 (1997).

21.

Rhee, G. Y. Y. A steady tradition research of phosphate uptake, progress charge and polyphosphate in Scenedesmus sp. J. Phycol. 9, 495–506 (1973).

22.

Braun, P. D., Schulz-Vogt, H. N., Vogts, A. & Nausch, M. Variations within the accumulation of phosphorus between vegetative cells and heterocysts within the cyanobacterium Nodularia spumigena. Sci. Rep. eight, 5651, https://doi.org/10.1038/srep05651 (2018).

23.

Amyot, M., Clayden, M. G., Macmillan, G. A., Perron, T. & Arscott-Gauvin, A. Destiny and trophic switch of uncommon earth components in temperate lake meals webs. Environ. Sci. Tech. 51, 6009–6017 (2017).

24.

Ruiz, F. A., Marchesini, N., Seufferheld, M., Govindjee & Docampo, R. The polyphosphate our bodies of Chlamydomonas reinhardtii possess a proton-pumping pyrophosphatase and are just like acidocalcisomes. J. Biol. Chem. 276, 46196–46203 (2001).

25.

Nishikawa, Ok., Yamakoshi, Y., Uemura, I. & Tominaga, N. Ultrastructural adjustments in Chlamydomonas acidophila (Chlorophyta) induced by heavy metals and polyphosphate metabolism. FEMS Microbiol. Ecol. 44, 253–259 (2003).

26.

Aguilera, A. & Amils, R. Tolerance to cadmium in Chlamydomonas sp. (Chlorophyta) strains remoted from an excessive acidic setting, the Tinto River (SW, Spain). Aquat. Toxicol. 75, 316–329 (2005).

27.

Lavoie, M., Raven, J. A., Jones, O. A. H. & Qian, H. Power price of intracellular metallic and metalloid detoxing in wild-type eukaryotic phytoplankton. Metallomics eight, 1097–1109 (2016).

28.

Wooden, S. A. The aqueous geochemistry of the uncommon earth components and yttrium. Chem. Geol. 82, 159–186 (1990).

29.

Docampo, R., Ulrich, P. & Moreno, S. N. Evolution of acidocalcisomes and their function in polyphosphate storage and osmoregulation in eukaryotic microbes. Phil. Trans. R. Soc.: B Biol. Sci. 365, 775–784 (2010).

30.

Decho, A. W. Overview of biopolymer-induced mineralization: What goes on in biofilms? Ecol. Eng. 36, 137–144 (2009).

31.

Pang, Ok. et al. The character and origin of nucleus-like intracellular inclusions in Paleoproterozoic eukaryote microfossils. Geobiol. 11, 499–510 (2013).

32.

Barghoorn, E. S. & Schopf, J. W. Microorganisms from the Late Precambrian of Central Australia. Science 150, 337–339 (1965).

33.

Oehler, D. Z. Pyrenoid-like buildings in late Precambrian algae from the Bitter Springs Formation of Australia. J. Paleontol. 51, 885–901 (1976).

34.

Knoll, A. H. & Barghoorn, E. S. Precambrian eukaryotic organisms: a reassessment of the proof. Science 190, 52–54 (1975).

35.

Golubic, S. & Barghoorn, E. S. Interpretation of microbial fossils with particular reference to the Precambrian. [Flügel, E. (ed.)] Fossil Algae, pp. 1–14 (Springer-Verlag, Berlin, 1977).

36.

Francis, S., Margulis, L. & Barghoorn, E. S. On the experimental silicification of microorganisms II. On the time of look of eukaryotic organisms within the fossil file. Precamb. Res. 6, 65–100 (1978).

37.

Hagadorn, J. W. et al. Mobile and sub-cellular construction of Neoproterozoic animal embryos. Science 314, 291–294 (2006).

38.

Schiffbauer, J. D., Xiao, S., Sharma, Ok. S. & Wang, G. The origin of intracellular buildings in Ediacaran metazoan embryos. Geology 40, 223–226 (2012).

39.

Bengtson, S., Sallstedt, T., Belivanova, V. & Whitehouse, M. Three-dimensional preservation of mobile and sub-cellular buildings suggests 1.6 billion-year-old crown-group crimson algae. PLoS Biol. 15, e2000735 (2017).

40.

Huldtgren, T. et al. Fossilized nuclei and germination buildings establish Ediacaran “animal embryos” as encysting protists. Science 334, 1696–1699 (2011).


Supply hyperlink
asubhan

wordpress autoblog

amazon autoblog

affiliate autoblog

wordpress web site

web site growth

Show More

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Close