A 90-nm-thick graphene metamaterial for robust and very broadband absorption of unpolarized gentle


Cao, A., Zhang, X., Xu, C., Wei, B. & Wu, D. Tandem construction of aligned carbon nanotubes on Au and its photo voltaic thermal absorption. Sol. Power Mater. Sol. Cells 70, 481–486 (2002).


Ghasemi, H. et al. Photo voltaic steam technology by warmth localization. Nat. Commun. 5, 4449 (2014).


Ren, H. et al. Hierarchical graphene foam for environment friendly omnidirectional photo voltaic–thermal power conversion. Adv. Mater. 29, 1702590 (2017).


Zhu, M. et al. Tree‐impressed design for top‐effectivity water extraction. Adv. Mater. 29, 1704107 (2017).


Li, X. et al. Graphene oxide-based environment friendly and scalable photo voltaic desalination underneath one solar with a confined 2D water path. Proc. Natl Acad. Sci. USA 113, 13953–13958 (2016).


Huang, J. et al. Harnessing structural darkness within the seen and infrared wavelengths for a brand new supply of sunshine. Nat. Nanotechnol. 11, 60–66 (2015).


Yao, Y. et al. Electrically tunable metasurface excellent absorbers for ultrathin mid-infrared optical modulators. Nano Lett. 14, 6526–6532 (2014).


Li, W. & Valentine, J. Metamaterial excellent absorber based mostly sizzling electron photodetection. Nano Lett. 14, 3510–3514 (2014).


Mellouki, I., Bennaji, N. & Yacoubi, N. IR characterization of graphite black-coating for cryogenic detectors. Infrared Phys. Technol. 50, 58–62 (2007).


Shi, H., Okay, J. G., Gained Baac, H. & Jay Guo, L. Low density carbon nanotube forest as an index-matched and close to excellent absorption coating. Appl. Phys. Lett. 99, 211103 (2011).


Mizuno, Ok. et al. A black physique absorber from vertically aligned single-walled carbon nanotubes. Proc. Natl Acad. Sci. USA 106, 6044–6047 (2009).


Xu, T. et al. Structural colours: from plasmonic to carbon nanostructures. Small 7, 3128–3136 (2011).


Hedayati, M. Ok., Faupel, F. & Elbahri, M. Tunable broadband plasmonic excellent absorber at seen frequency. Appl. Phys. A 109, 769–773 (2012).


Zhou, L. et al. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced photo voltaic desalination. Nat. Photon. 10, 393–398 (2016).


Zhou, L. et al. Self-assembled spectrum selective plasmonic absorbers with tunable bandwidth for photo voltaic power conversion. Nano Power 32, 195–200 (2017).


Hedayati, M. Ok. et al. Design of an ideal black absorber at seen frequencies utilizing plasmonic metamaterials. Adv. Mater. 23, 5410–5414 (2011).


Aydin, Ok., Ferry, V. E., Briggs, R. M. & Atwater, H. A. Broadband polarization-independent resonant gentle absorption utilizing ultrathin plasmonic tremendous absorbers. Nat. Commun. 2, 517 (2011).


Landy, N., Sajuyigbe, S., Mock, J., Smith, D. & Padilla, W. Good metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008).


Massiot, I. et al. Steel nanogrid for broadband multiresonant light-harvesting in ultrathin GaAs layers. ACS Photonics 1, 878–884 (2014).


Ding, F. et al. Ultrabroadband robust gentle absorption based mostly on skinny multilayered metamaterials. Laser Photonics Rev. eight, 946–953 (2014).


Wu, D. et al. Numerical examine of the broad‐angle polarization‐unbiased extremely‐broadband environment friendly selective photo voltaic absorber in all the photo voltaic spectrum. Photo voltaic RRL 1, 1770126 (2017).


Sturmberg, B. C. et al. Complete absorption of seen gentle in ultrathin weakly absorbing semiconductor gratings. Optica three, 556–562 (2016).


Zhu, L. et al. Angle-selective excellent absorption with two-dimensional supplies. Mild Sci. Appl. 5, e16052 (2016).


Xiang, Y. et al. Vital coupling with graphene-based hyperbolic metamaterials. Sci. Rep. four, 5483 (2014).


Riley, C. T. et al. Close to-perfect broadband absorption from hyperbolic metamaterial nanoparticles. Proc. Natl Acad. Sci. USA 114, 1264–1268 (2017).


Luo, H., Cheng, Y. & Gong, R. Numerical examine of metamaterial absorber and lengthening absorbance bandwidth based mostly on multi-square patches. Eur. Phys. J. B 81, 387–392 (2011).


Popov, E. et al. Complete absorption of unpolarized gentle by crossed gratings. Choose. Categorical 16, 6146–6155 (2008).


Lee, Ok.-T., Ji, C. & Guo, L. J. Huge-angle, polarization-independent ultrathin broadband seen absorbers. Appl. Phys. Lett. 108, 031107 (2016).


Lin, S.-Y., Moreno, J. & Fleming, J. Three-dimensional photonic-crystal emitter for thermal photovoltaic energy technology. Appl. Phys. Lett. 83, 380–382 (2003).


Li, Z., Palacios, E., Butun, S., Kocer, H. & Aydin, Ok. Omnidirectional, broadband gentle absorption utilizing large-area, ultrathin lossy metallic movie coatings. Sci. Rep. 5, 15137 (2015).


Koppens, F. et al. Photodetectors based mostly on graphene, different two-dimensional supplies and hybrid techniques. Nat. Nanotechnol. 9, 780–793 (2014).


Nair, R. R. et al. Positive construction fixed defines visible transparency of graphene. Science 320, 1308–1308 (2008).


Ferreira, A. & Peres, N. Full gentle absorption in graphene-metamaterial corrugated buildings. Phys. Rev. B 86, 205401 (2012).


Thongrattanasiri, S., Koppens, F. H. & de Abajo, F. J. G. Full optical absorption in periodically patterned graphene. Phys. Rev. Lett. 108, 047401 (2012).


Ferreira, A., Peres, N., Ribeiro, R. & Stauber, T. Graphene-based photodetector with two cavities. Phys. Rev. B 85, 115438 (2012).


Nefedov, I. S., Valaginnopoulos, C. A. & Melnikov, L. A. Good absorption in graphene multilayers. J. Choose. 15, 114003 (2013).


Chang, Y.-C. et al. Realization of mid-infrared graphene hyperbolic metamaterials. Nat. Commun. 7, 10568 (2016).


Zheng, X. et al. Extremely environment friendly and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing. Nat. Commun. 6, 8433 (2015).


Kaltenbrunner, M. et al. Ultrathin and light-weight natural photo voltaic cells with excessive flexibility. Nat. Commun. three, 770 (2012).


Fang, A., Koschny, T. & Soukoulis, C. M. Optical anisotropic metamaterials: Unfavourable refraction and focusing. Phys. Rev. B 79, 245127 (2009).


Dossou, Ok. B. et al. Modal formulation for diffraction by absorbing photonic crystal slabs. JOSA A 29, 817–831 (2012).


Sturmberg, B. C. et al. EMUstack: an open supply path to insightful electromagnetic computation through the Bloch mode scattering matrix technique. Comput. Phys. Commun. 202, 276–286 (2016).


Kotov, N. A., Dékány, I. & Fendler, J. H. Ultrathin graphite oxide–polyelectrolyte composites ready by self‐meeting: Transition between conductive and non‐conductive states. Adv. Mater. eight, 637–641 (1996).


Zhang, Y. L. et al. Photoreduction of graphene oxides: strategies, properties, and purposes. Adv. Choose. Mater. 2, 10–28 (2014).


Zheng, X., Jia, B., Chen, X. & Gu, M. In situ third‐order non‐linear responses throughout laser discount of graphene oxide skinny movies in direction of on‐chip non‐linear photonic gadgets. Adv. Mater. 26, 2699–2703 (2014).


Guo, L. et al. Laser‐mediated programmable N doping and simultaneous discount of graphene oxides. Adv. Choose. Mater. 2, 120–125 (2014).


Kravets, V. et al. Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption. Phys. Rev. B 81, 155413 (2010).


Bouchitté, G. & Petit, R. On the ideas of a wonderfully conducting materials and of a wonderfully conducting and infinitely skinny display screen. Radio Sci. 24, 13–26 (1989).


Sales space, H. Laser processing in industrial photo voltaic module manufacturing. J. Laser Micro. Nanoen. 5, 183–191 (2010).


Hummers, W. S. Jr & Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339–1339 (1958).

Supply hyperlink

wordpress autoblog

amazon autoblog

affiliate autoblog

wordpress web site

web site improvement

Show More

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *