Chemistry

A de novo technique for predictive crystal engineering to tune excitonic coupling


1.

Zhang, Q. et al. Environment friendly blue natural light-emitting diodes using thermally activated delayed fluorescence. Nat. Photonics eight, 326–332 (2014).

2.

Reineke, S. et al. White natural light-emitting diodes with fluorescent tube effectivity. Nature 459, 234–238 (2009).

Three.

Kido, J., Kimura, M. & Nagai, Okay. Multilayer white light-emitting natural electroluminescent gadget. Science 267, 1332–1334 (1995).

Four.

Hu, Z. et al. An perception into non-emissive excited states in conjugated polymers. Nat. Commun. 6, 8246 (2015).

5.

Hestand, N. J. & Spano, F. C. Expanded principle of H- and J- molecular aggregates: the consequences of vibronic coupling and intermolecular cost switch. Chem. Rev. 118, 7069–7163 (2018).

6.

Würthner, F., Kaiser, T. E. & Saha-Möller, C.-R. J-aggregates: from serendipitous discovery to supramolecular engineering of purposeful dye supplies. Angew. Chem. Int. Ed. 50, 3376–3410 (2011).

7.

Eder, T. et al. Switching between H- and J-type digital coupling in single conjugated polymer aggregates. Nat. Commun. eight, 1641 (2017).

eight.

Hestand, N. J. & Spano, F. C. Molecular combination photophysics past the Kasha mannequin: novel design ideas for natural supplies. Acc. Chem. Res. 50, 341–350 (2017).

9.

Malt’sev, E. I., Lypenko, D. A., Shapiro, B. I. & Brusentseva, M. A. Electroluminescence of polymer/J-aggregate composites. Appl. Phys. Lett. 75, 1896 (1999).

10.

Gao, J. et al. Enhanced cost switch doping effectivity in J-aggregate poly(Three-hexylthiophene) nanofibers. J. Phys. Chem. C 119, 16396–16402 (2015).

11.

Yagai, S., Seki, T., Karatsu, T., Kitamura, A. & Würthner, F. Transformation from H- to J- aggregated perylene bisimide dyes by complexation with cyanurates. Angew. Chem. Int. Ed. 47, 3367–3371 (2008).

12.

Keller, N. et al. Implementing prolonged porphyrin J-aggregate stacking in covalent natural frameworks. J. Am. Chem. Soc. 140, 16544–16552 (2018).

13.

Egawa, Y., Hayashida, R. & Anzai, J.-i pH- induced interconversion between J-aggregates and H-aggregates of 5,10,15,20-tetrakis(Four-sulfonatophenyl)porphyrin in polyelectrolyte multilayer movies. Langmuir 23, 13146–13150 (2007).

14.

Li, L., Shen, S., Lin, R., Bai, Y. & Liu, H. Fast and particular luminescence sensing of Cu(II) ions with a porphyrinic metal-organic framework. Chem. Commun. 53, 9986–9989 (2017).

15.

Neumann, M. A., Leusen, F. J. J. & Kendrick, J. A significant advance in crystal construction prediction. Angew. Chem. Int. Ed. 47, 2427–2430 (2008).

16.

Nyman, J. & Reutzel-Edens, S. M. Crystal construction prediction is altering from primary science to utilized expertise. Faraday Talk about. 211, 459–476 (2018).

17.

Sikdar, N. et al. Coordination-driven fluorescent J-aggregates in a perylenetetracarboxylate-based MOF: everlasting porosity and proton conductivity. J. Phys. Chem. C 120, 13622–13629 (2016).

18.

Zhu, L., Al-Kysi, R.-O., Dillon, R. J., Tham, F. S. & Bardeen, C. J. Crystal buildings and photophysical properties of 9-anthracene carboxylic acid derivatives for photomechanical purposes. Cryst. Development Des. 11, 4975–4983 (2011).

19.

Maji, T. Okay., Matsuda, R. & Kitagawa, S. A versatile interpenetrating coordination framework with a bimodal porous performance. Nat. Mater. 6, 142–148 (2007).

20.

Kitagawa, S., Kitaura, R. & Noro, S.-I. Purposeful porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004).

21.

Furukawa, H., Cordova, Okay. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and purposes of metal-organic frameworks. Science 341, 1230444 (2013).

22.

Horike, S. et al. Dynamic movement of constructing blocks in porous coordination polymers. Angew. Chem. Int. Ed. 45, 7226–7230 (2006).

23.

Vogelsberg, C. S. et al. Ultrafast rotation in an amphidynamic crystalline metal-organic framework. Proc. Natl Acad. Sci. USA 114, 13613–13618 (2017).

24.

Deng, H. S. et al. A number of purposeful teams of various ratios in metal-organic frameworks. Science 327, 846–850 (2010).

25.

Tanabe, Okay. Okay. & Cohen, S. M. Postsynthetic modification of metal-organic frameworks—a progress report. Chem. Soc. Rev. 40, 498–519 (2011).

26.

Li, S., Chung, Y. G., Simon, C. M. & Snurr, R. Q. Excessive-throughput computational screening of multivariate metal-organic frameworks (MTV-MOFs) for CO2 seize. J. Phys. Chem. Lett. eight, 6135–6141 (2017).

27.

Addicoat, M. A., Coupry, D. E. & Heine, T. AuToGraFS: automated topological generator for framework buildings. J. Phys. Chem. A 118, 9607–9614 (2014).

28.

Liu, J. & Wöll, C. Floor-supported metal-organic framework skinny movies: fabrication strategies, purposes, and challenges. Chem. Soc. Rev. 46, 5730–5770 (2017).

29.

Liu, J. et al. A novel sequence of isoreticular steel natural frameworks: realizing meta-stable buildings by liquid part epitaxy. Sci. Rep. 2, 921 (2012).

30.

Haldar, R. et al. Anisotropic power switch in crystalline chromophore assemblies. Nat. Commun. 9, 4332 (2018).

31.

Kobaisi, M. A., Bhosale, S. V., Latham, Okay., Raynor, A. M. & Bhosale, S. V. Purposeful naphthalene diimides: synthesis, properties and purposes. Chem. Rev. 116, 11685–11796 (2016).

32.

Suraru, S.-L. & Würthner, F. Methods for synthesis of purposeful naphthalene diimides. Angew. Chem. Int. Ed. 53, 7428–7448 (2014).

33.

Yan, H. et al. A high-mobility electron-transporting polymer for printed transistors. Nature 457, 679–686 (2009).

34.

Sakai, N., Mareda, J., Vauthey, E. & Matile, S. Core-substituted naphthalenediimides. Chem. Commun. 46, 4225–4237 (2010).

35.

Kar, H. & Ghosh, S. J-aggregation of sulfur-substituted naphthalenediimide (NDI) with remarkably shiny fluorescence. Chem. Commun. 52, 8818–8821 (2016).

36.

Kar, H. et al. Cooperative supramolecular polymerization of an amine-substituted naphthalene-diimide and its affect on excited state photophysical properties. Chem. Sci. 7, 1115–1120 (2016).

37.

Berrocal, J. A. et al. Unraveling the driving forces within the self-assembly of monodisperse naphthalenediimide-oligodimethylsiloxane block molecules. ACS Nano 11, 3733–3741 (2017).

38.

Das, A. & Ghosh, S. H-bonding directed programmed supramolecular meeting of naphthalene-diimide (NDI) derivatives. Chem. Commun. 52, 6860–6872 (2016).

39.

Fu, C. et al. Unravelling the self-assembly of hydrogen bonded NDI semiconductors in 2D and 3D. Chem. Mater. 28, 951–961 (2016).

40.

Haldar, R. et al. Excitonically coupled states in crystalline coordination networks. Chem. Eur. J. 23, 14316–14322 (2017).

41.

Wade, C. R., Li, M. & Dincă, M. Facile deposition of multicolored electrochromic metal-organic framework skinny movies. Angew. Chem. Int. Ed. 52, 13377–13381 (2013).

42.

Guo, Z. et al. Modulating conductivity of metal-organic framework movies with intercalated visitor π-systems. J. Mater. Chem. C Four, 894–899 (2016).

43.

Madjet, M. E., Abdurahman, A. & Renger, T. Intermolecular Coulomb couplings from ab initio electrostatic potentials: software to optical transitions of strongly coupled pigments in photosynthetic antennae and response facilities. J. Phys. Chem. B 110, 17268–17281 (2006).

44.

Zhang, B. et al. Extremely fluorescent molecularly insulated perylene diimides: impact of focus on photophysical properties. Chem. Mater. 29, 8395–8403 (2017).

45.

Kumar, M. & George, S. J. Spectroscopic probing of the dynamic self-assembly of an amphiphilic naphthalene diimide exhibiting reversible vapochromism. Chem. Eur. J 17, 11102–11107 (2011).

46.

Kumar, M. & George, S. J. Inexperienced fluorescent natural nanoparticles by self-assembly induced enhanced emission of a naphthalenediimide bolaamphiphile. Nanoscale Three, 2130–2133 (2011).

47.

Sarkar, A., Dhiman, S., Chalishazar, A. & George, S. J. Visualization of stereoselective supramolecular polymers by chirality-controlled power switch. Angew. Chem. Int. Ed. 129, 13955–13959 (2017).

48.

Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

49.

Howard, I. A., Zutterman, F., Deroover, G., Lamoen, D. & Van Alsenoy, C. Approaches to calculation of exciton interplay energies for a molecular dimer. J. Phys. Chem. B 108, 19155–19162 (2004).

50.

Jorgensen, W. L. & Tirado-Rives, J. Potential power features for atomic-level simulations of water and natural and biomolecular programs. Proc. Natl Acad. Sci. USA 102, 6665–6670 (2005).

51.

Dodda, L. S., Vilseck, J. Z., Tirado-Rives, J. & Jorgensen, W. L. 1.14*CM1A-LBCC: localized bond-charge corrected CM1A fees for condensed-phase simulations. J. Phys. Chem. B 121, 3864–3870 (2017).

52.

Dodda, L. S., Cabeza de Vaca, I., Tirado-Rives, J. & Jorgensen, W. L. LigParGen internet server: an automated OPLS-AA parameter generator for natural ligands. Nucleic Acids Res. 45, W331–W336 (2017).

53.

Hess, B., Kutzner, C., van der Spoel, D. & Lindahl, E. GROMACS Four: algorithms for extremely environment friendly, load-balanced, and scalable molecular simulation. J. Chem. Principle Comput. Four, 435–447 (2008).

54.

Pronk, S. et al. GROMACS Four.5: a high-throughput and extremely parallel open supply molecular simulation toolkit. Bioinformatics 29, 845–854 (2013).

55.

Páll, S., Abraham, M. J., Kutzner, C., Hess, B. & Lindahl, E. in Fixing Software program Challenges for Exascale (eds Markidis, S. & Laure. E.) Three–27 (Springer Worldwide Publishing, Switzerland, London, 2015).

56.

Abraham, M. J. et al. GROMACS: excessive efficiency molecular simulations by multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).

57.

Laarhoven, V., Peter, J. M. & Aarts E. H. L. Simulated Annealing: Principle and Purposes 7–15 (Springer, Dordrecht, 1987).

58.

Becke, A. D. Density-functional energy-exchange approximation with right asymptotic behaviour. Phys. Rev. 38, 3098–3100 (1988).

59.

Schäfer, A., Huber, H. & Ahlrichs, R. Totally optimized contracted Gaussian foundation units of triple zeta valance high quality for atoms Li to Kr. J. Chem. Phys. 100, 5829–5835 (1994).

60.

Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A constant and correct ab initio parametrization of density purposeful dispersion correction (DFT-D) for the 94 components H-Pu. J. Chem. Phys. 132, 154104 (2010).

61.

Grimme, S., Ehrlich, S. & Goerigk, L. Impact of the damping perform in dispersion corrected density purposeful principle. J. Comput. Chem. 32, 1456–1465 (2011).

62.

Eichkorn, Okay., Treutler, O., Öhm, H., Häser, M. & Ahlrichs, R. Auxiliary foundation units to approximate coulomb potential. Chem. Phys. Lett. 240, 283–290 (1995).

63.

Perdew, J. P., Burke, Okay. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).

64.

Weigend, F. & Ahlrichs, R. Balanced foundation units of cut up valance, triple zeta valance and quadruple zeta valance high quality for H to Rn: design and evaluation for accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).

65.

TURBOMOLE V7.Three 2018. A Growth of College of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007. http://www.turbomole.com (TURBOMOLE GmbH, 2007).

66.

Mello, J. C., de., Wittmann, H. F. & Buddy, R. H. An improved experimental dedication of exterior photoluminescence quantum effectivity. Adv. Mater. 9, 230–232 (1997).


Supply hyperlink
asubhan

wordpress autoblog

amazon autoblog

affiliate autoblog

wordpress web site

web site growth

Show More

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Close