A Novel Function of Prolidase in Cocaine-Mediated Breach within the Barrier of Mind Microvascular Endothelial Cells


McArthur, J. C., Steiner, J., Sacktor, N. & Nath, A. Human immunodeficiency virus-associated neurocognitive problems: Thoughts the hole. Ann Neurol. 67, 699–714 (2010).


Rao, V. R., Ruiz, A. P. & Prasad, V. R. Viral and mobile components underlying neuropathogenesis in HIV related neurocognitive problems (HAND). AIDS Res Ther. 11, 11–13 (2014).


Kaul, M., Backyard, G. A. & Lipton, S. A. Pathways to neuronal harm and apoptosis in HIV-associated dementia. Nature. 410, 988–94 (2001).


Nath, A. Human immunodeficiency virus (HIV) proteins in neuropathogenesis of HIV dementia. J Infect Dis. 186, S193–Eight (2002).


Sanmarti, M. et al. HIV-associated neurocognitive problems. J Mol Psychiatry. 2, 2 (2014).


Woods, S. P., Moore, D. J., Weber, E. & Grant, I. Cognitive neuropsychology of HIV-associated neurocognitive problems. Neuropsychol Rev. 19, 152–68 (2009).


Patel, S. M. et al. The mixture results of a number of comorbid danger components on cognition amongst HIV-infected people. J Clin Exp Neuropsychol. 35, 421–34 (2013).


Haase, A. T. Pathogenesis of lentivirus infections. Nature. 322, 130–136 (1986).


Peluso, R., Haase, A., Stowring, L., Edwards, M. & Ventura, P. A Trojan Horse mechanism for the unfold of visna virus in monocytes. Virology. 147, 231–236 (1985).


Pence, B. W. et al. Coping methods and patterns of alcohol and drug use amongst HIV-infected sufferers in america Southeast. AIDS Affected person Care STDS. 22, 869–877 (2008).


Pakesch, G. et al. Neuropsychological findings and psychiatric signs in HIV-1 contaminated and noninfected drug customers. Psychiatry Res. 41, 163–177 (1992).


Goodwin, G. M., Pretsell, D. O., Chiswick, A., Egan, V. & Brettle, R. P. The Edinburgh cohort of HIV-positive injecting drug customers at 10 years after an infection: a case-control research of the evolution of dementia. AIDS. 10, 431–440 (1996).


Nath, A., Maragos, W. F., Avison, M. J., Schmitt, F. A. & Berger, J. R. Acceleration of HIV dementia with methamphetamine and cocaine. J Neurovirol. 7, 66–71 (2001).


Ferris, M. J., Mactutus, C. F. & Booze, R. M. Neurotoxic profiles of HIV, psychostimulant medication of abuse, and their concerted impact on the mind: present standing of dopamine system vulnerability in NeuroAIDS. Neurosci. Biobehav Rev. 32, 883–909 (2008).


Norman, L. R., Basso, M., Kumar, A. & Malow, R. Neuropsychological penalties of HIV and substance abuse: a literature overview and implications for therapy and future analysis. Curr Drug Abuse Rev. 2, 143–56 (2009).


Larrat, E. P. & Zierler, S. Entangled epidemics: cocaine use and HIV illness. J Psychoactive Medication. 25, 207–221 (1993).


Fiala, M. et al. Cocaine will increase human immunodeficiency virus kind 1 neuroinvasion via transforming mind microvascular endothelial cells. J Neurovirol. 11, 281–291 (2005).


Fiala, M. et al. Cocaine enhances monocyte migration throughout the blood-brain barrier. Cocaine’s connection to AIDS dementia and vasculitis? Adv Exp Med Biol. 437, 199–205 (1998).


Kousik, S. M., Napier, T. C. & Carvey, P. M. The consequences of psychostimulant medication on blood mind barrier perform and neuroinflammation. Entrance Pharmacol. three, 121 (2012).


Ballabh, P., Braun, A. & Nedergaard, M. The blood-brain barrier: an outline: construction, regulation, and medical implications. Neurobiol Dis. 16, 1–13 (2004).


Ivey, N. S., MacLean, A. G. & Lackner, A. A. Acquired immunodeficiency syndrome and the blood-brain barrier. J Neurovirol. 15, 111–122 (2009).


Stamatovic, S. M., Preserve, R. F. & Andjelkovic, A. V. Mind endothelial cell-cell junctions: how you can “open” the blood mind barrier. Curr Neuropharmacol. 6, 179–192 (2008).


Lv, S. et al. Tumour necrosis factor-alpha impacts blood-brain barrier permeability and tight junction-associated occludin in acute liver failure. Liver Int. 30, 1198–1210 (2010).


Dhillon, N. Okay. et al. Cocaine-mediated alteration in tight junction protein expression and modulation of CCL2/CCR2 axis throughout the blood-brain barrier: implications for HIV-dementia. J Neuroimmune Pharmacol. three, 52–56 (2008).


Chang, S. L., Bersig, J., Felix, B., Fiala, M. & Home, S. D. Persistent cocaine alters hemodynamics and leukocyte-endothelial interactions in rat mesenteric venules. Life Sci. 66, 2357–2369 (2000).


Yao, H., Duan, M. & Buch, S. Cocaine-mediated induction of platelet-derived development issue: implication for elevated vascular permeability. Blood. 117, 2538–2547 (2011).


Sprint, S., Balasubramaniam, M., Villalta, F., Sprint, C. & Pandhare, J. Impression of cocaine abuse on HIV pathogenesis. Entrance Microbiol. 6, 1111 (2015).


Theocharis, A. D., Skandalis, S. S., Gialeli, C. & Karamanos, N. Okay. Extracellular matrix construction. Adv Drug Deliv Rev. 97, four–27 (2016).


Baeten, Okay. M. & Akassoglou, Okay. Extracellular matrix and matrix receptors in blood-brain barrier formation and stroke. Dev Neurobiol. 71, 1018–1039 (2011).


Gelse, Okay., Poschl, E. & Aigner, T. Collagens–construction, perform, and biosynthesis. Adv Drug Deliv Rev. 55, 1531–1546 (2003).


Fukuda, S. et al. Focal cerebral ischemia induces lively proteases that degrade microvascular matrix. Stroke. 35, 998–1004 (2004).


Lukes, A., Mun-Bryce, S., Lukes, M. & Rosenberg, G. A. Extracellular matrix degradation by metalloproteinases and central nervous system ailments. Mol Neurobiol. 19, 267–284 (1999).


Liotta, L. A. et al. Impact of plasminogen activator (urokinase), plasmin, and thrombin on glycoprotein and collagenous parts of basement membrane. Most cancers Res. 41, 4629–3466 (1981).


Singh, D., Srivastava, S. Okay., Chaudhuri, T. Okay. & Upadhyay, G. Multifaceted function of matrix metalloproteinases (MMPs). Entrance Mol Biosci. 2, 19 (2015).


Mukherjee, A. & Swarnakar, A. Implication of matrix metalloproteinases in regulating neuronal dysfunction. Mol Biol Rep. 42, 1–11 (2015).


Cossins, J. A. et al. Enhanced expression of MMP-7 and MMP-9 in demyelinating a number of sclerosis lesions. Acta Neuropathol. 94, 590–598 (1997).


Lindberg, R. L. et al. Gelatinase B [matrix metalloproteinase (MMP)-9] and collagenases (MMP-Eight/-13) are upregulated in cerebrospinal fluid throughout aseptic and bacterial meningitis in youngsters. Neuropathol Appl Neurobiol. 32, 304–317 (2006).


Leppert, D. et al. Matrix metalloproteinase (MMP)-Eight and MMP-9 in cerebrospinal fluid throughout bacterial meningitis: affiliation with blood-brain barrier injury and neurological sequelae. Clin Infect Dis. 31, 80–84 (2000).


Nygardas, P. T. & Hinkkanen, A. E. Up-regulation of MMP-Eight and MMP-9 exercise within the BALB/c mouse spinal wire correlates with the severity of experimental autoimmune encephalomyelitis. Clin Exp Immunol. 128, 245–254 (2002).


Liu, W., Hendren, J., Qin, X. J., Shen, J. & Liu, Okay. J. Normobaric hyperoxia attenuates early blood-brain barrier disruption by inhibiting MMP-9-mediated occludin degradation in focal cerebral ischemia. J Neurochem. 108, 811–820 (2009).


Rosell, A. et al. Elevated mind expression of matrix metalloproteinase-9 after ischemic and hemorrhagic human stroke. Stroke. 37, 1399–1406 (2006).


Rosell, A. & Lo, E. H. Multiphasic roles for matrix metalloproteinases after stroke. Curr Opin Pharmacol. Eight, 82–89 (2008).


Zhao, B. Q. et al. Function of matrix metalloproteinases in delayed cortical responses after stroke. Nat Med. 12, 441–445 (2006).


Pfefferkorn, T. & Rosenberg, G. A. Closure of the blood-brain barrier by matrix metalloproteinase inhibition reduces rtPA-mediated mortality in cerebral ischemia with delayed reperfusion. Stroke. 34, 2025–2030 (2003).


Gu, Y. et al. Caveolin-1 regulates nitric oxide-mediated matrix metalloproteinases exercise and blood-brain barrier permeability in focal cerebral ischemia and reperfusion harm. J Neurochem. 120, 147–156 (2012).


Smith, A. C. et al. Synaptic plasticity mediating cocaine relapse requires matrix metalloproteinases. Nat Neurosci. 17, 1655–1657 (2014).


Brown, T. E. et al. Function of matrix metalloproteinases within the acquisition and reconsolidation of cocaine-induced conditioned place choice. Study Mem. 14, 214–223 (2007).


Nair, M. P. et al. Drug abuse and neuropathogenesis of HIV an infection: function of DC-SIGN and IDO. J Neuroimmunol. 157, 56–60 (2004).


Wilk, P. et al. Substrate specificity and response mechanism of human prolidase. FEBS J. 284, 2870–2885 (2017).


Surazynski, A., Miltyk, W., Palka, J. & Phang, J. M. Prolidase-dependent regulation of collagen biosynthesis. Amino Acids. 35, 731–738 (2008).


Eigenmann, D. E. et al. Comparative research of 4 immortalized human mind capillary endothelial cell traces, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of tradition situations, for an in vitro blood-brain barrier mannequin for drug permeability research. Fluids Obstacles CNS. 10, 33 (2013).


Persidsky, Y. Mannequin programs for research of leukocyte migration throughout the blood – mind barrier. J Neurovirol. 5, 579–590 (1999).


Van Dyke, C., Barash, P. G., Jatlow, P. & Byck, R. Cocaine: plasma concentrations after intranasal software in man. Science. 191, 859–861 (1976).


Heard, Okay., Palmer, R. & Zahniser, N. R. Mechanisms of acute cocaine toxicity. Open Pharmacol J. 2, 70–78 (2008).


Blaho, Okay., Logan, B., Winbery, S., Park, L. & Schwilke, E. Blood cocaine and metabolite concentrations, medical findings, and final result of sufferers presenting to an ED. Am J Emerg Med. 18, 593–598 (2000).


Mittleman, R. E. & Wetli, C. V. Dying brought on by leisure cocaine use. An replace. JAMA. 252, 1889–1893 (1984).


Karch, S. B., Stephens, B. & Ho, C. H. Relating cocaine blood concentrations to toxicity–an post-mortem research of 99 instances. J Forensic Sci. 43, 41–45 (1998).


Peretti, F. J., Isenschmid, D. S., Levine, B., Caplan, Y. H. & Smialek, J. E. Cocaine fatality: an unexplained blood focus in a deadly overdose. Forensic Sci Int. 48, 135–138 (1990).


Galardy, R. E. et al. Low molecular weight inhibitors in corneal ulceration. Ann N Y Acad Sci. 732, 315–323 (1994).


Surazynski, A., Liu, Y., Miltyk, W. & Phang, J. M. Nitric oxide regulates prolidase exercise by serine/threonine phosphorylation. J Cell Biochem. 96, 1086–1094 (2005).


Mantri, C. Okay., Pandhare, J., Mantri, J. & Sprint, C. Cocaine enhances HIV-1 replication in CD4+ T cells by down-regulating MiR-125b. PLoS One 7, e51387 (2012).


Mittal, R. & Prasadarao, N. V. Nitric oxide/cGMP signalling induces Escherichia coli K1 receptor expression and modulates the permeability in human mind endothelial cell monolayers throughout invasion. Cell Microbiol. 12, 67–83 (2010).


Winkler, F., Koedel, U., Kastenbauer, S. & Pfister, H. W. Differential expression of nitric oxide synthases in bacterial meningitis: function of the inducible isoform for blood-brain barrier breakdown. J Infect Dis. 183, 1749–1759 (2001).


Zhao, Y., Vanhoutte, P. M. & Leung, S. W. S. Vascular nitric oxide: Past eNOS. J Pharmacol Sci. 129, 83–94 (2015).


Miranda, Okay. M., Espey, M. G. & Wink, D. A. A Speedy, Easy Spectrophotometric Methodology for Simultaneous Detection of Nitrate and Nitrite. Nitric Oxide. 5, 62–71 (2001).


Kuhar, M. J. Molecular pharmacology of cocaine: a dopamine speculation and its implications. Ciba Discovered Symp. 166, 81–89, dialogue 89–95 (1999).


Woolverton, W. L. & Johnson, Okay. M. Neurobiology of cocaine abuse. Traits Pharmacol Sci. 13, 193–200 (1992).


Daras, M. Neurologic issues of cocaine. NIDA Res Monogr. 163, 43–65 (1996).


Zhang, L. et al. Cocaine opens the blood-brain barrier to HIV-1 invasion. J Neurovirol. four, 619–626 (1998).


Sharma, H. S., Muresanu, D., Sharma, A. & Patnaik, R. Cocaine-induced breakdown of the blood-brain barrier and neurotoxicity. Int Rev Neurobiol. 88, 297–334 (2009).


Fiala, A. M. et al. Divergent results of cocaine on cytokine manufacturing by lymphocytes and monocyte/macrophages: HIV-1 enhancement by cocaine inside the blood-brain barrier. Adv Exp Med Biol. 402, 145–156 (1996).


Nair, M. P. et al. Cocaine differentially modulates chemokine manufacturing by mononuclear cells from regular donors and human immunodeficiency virus kind 1-infected sufferers. Clin Diagn Lab Immunol. 7, 96–100 (2000).


Clark, Okay. H., Wiley, C. A. & Bradberry, C. W. Psychostimulant abuse and neuroinflammation: rising proof of their interconnection. Neurotox Res. 23, 174–188 (2013).


Roach, D. M. et al. Up-regulation of MMP-2 and MMP-9 results in degradation of kind IV collagen throughout skeletal muscle reperfusion harm; safety by the MMP inhibitor, doxycycline. Eur J Vasc Endovasc Surg. 23, 260–269 (2002).


Klein, T. & Bischoff, R. Physiology and pathophysiology of matrix metalloproteases. Amino Acids. 41, 271–290 (2011).


Phang, J. M., Pandhare, J. & Liu, Y. The metabolism of proline as microenvironmental stress substrate. J Nutr. 138, 2008S–2015S (2008).


Lupi, A., Tenni, R., Rossi, A., Cetta, G. & Forlino, A. Human prolidase and prolidase deficiency: an outline on the characterization of the enzyme concerned in proline recycling and on the consequences of its mutations. Amino Acids. 35, 739–752 (2008).


Verma, A. Okay. et al. Prolidase-Related Hint Parts (Mn, Zn, Co, and Ni) within the Sufferers with Parkinson’s Illness. Biol Hint Elem Res. 171, 48–53 (2016).


Verma, A. Okay. et al. Plasma Prolidase Exercise and Oxidative Stress in Sufferers with Parkinson’s Illness. Parkinsons Dis. 2015, 598028 (2015).


Gunes, M. et al. Diagnostic efficiency of elevated prolidase exercise in schizophrenia. Neurosci Lett. 613, 36–40 (2016).


Bahceci, B. et al. Prolidase exercise and oxidative stress in sufferers with schizophrenia: a preliminary research. J Pak Med Assoc. 65, 131–135 (2015).


Selek, S., Altindag, A., Saracoglu, G., Celik, H. & Aksoy, N. Prolidase exercise and its diagnostic efficiency in bipolar dysfunction. J Have an effect on Disord. 129, 84–86 (2011).


Arikanoglu, A. et al. Relationship of cognitive efficiency with prolidase and oxidative stress in Alzheimer illness. Neurol Sci. 34, 2117–2121 (2013).


Oono, T., Fujiwara, Y., Yoshioka, T. & Arata, J. Prolidase exercise in power wound and blister fluids. J Dermatol. 24, 626–629 (1997).


Surazynski, A. et al. Extracellular matrix and HIF-1 signaling: the function of prolidase. Int J Most cancers. 122, 1435–1440 (2008).


Bagetta, G. et al. Inducible nitric oxide synthase is concerned within the mechanisms of cocaine enhanced neuronal apoptosis induced by HIV-1 gp120 within the neocortex of rat. Neurosci Lett. 356, 183–186 (2004).


Sammut, S. & West, A. R. Acute cocaine administration will increase NO efflux within the rat prefrontal cortex by way of a neuronal NOS-dependent mechanism. Synapse. 62, 710–713 (2008).


Persidsky, Y. et al. Microglial and astrocyte chemokines regulate monocyte migration via the blood-brain barrier in human immunodeficiency virus-1 encephalitis. Am J Pathol. 155, 1599–1611 (1999).


Zenon, F., Segarra, A. C., Gonzalez, M. & Meléndez, L. M. Cocaine potentiates cathepsin B secretion and neuronal apoptosis from HIV-infected macrophages. J Neuroimmune Pharmacol. 9, 703–715 (2014).


Gaskill, P. J., Calderon, T. M., Coley, J. S. & Berman, J. W. Drug induced will increase in CNS dopamine alter monocyte, macrophage and T cell capabilities: implications for HAND. J Neuroimmune Pharmacol. Eight, 621–42 (2013).


Aiken, C. Cell-free assays for HIV-1 uncoating. Strategies Mol Biol. 485, 41–53 (2009).


Platt, E. J., Wehrly, Okay., Kuhmann, S. E., Chesebro, B. & Kabat, D. Results of CCR5 and CD4 cell floor concentrations on infections by macrophagetropic isolates of human immunodeficiency virus kind 1. J Virol. 72, 2855–2864 (1998).

Supply hyperlink

wordpress autoblog

amazon autoblog

affiliate autoblog

wordpress web site

web site improvement

Show More

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *