A strong and valuable metal-free excessive efficiency cobalt Fischer–Tropsch catalyst


de Klerk, A. in Future Power: Improved, Sustainable and Clear Choices for our Planet 2nd edn (ed. Letcher, T. M.) Ch. 12 (Elsevier, 2014).


Khodakov, A. Y., Chu, W. & Fongarland, P. Advances within the improvement of novel cobalt Fischer−Tropsch catalysts for synthesis of long-chain hydrocarbons and clear fuels. Chem. Rev. 107, 1692–1744 (2007).


Jothimurugesan, Ok. Secure help for Fischer–Tropsch catalyst. US patent 9,370,768 B2 (2014).


Rytter, E. & Holmen, A. Deactivation and regeneration of economic sort Fischer–Tropsch co-catalysts—a mini-review. Catalysts 5, 478–499 (2015).


Perego, C., Bortolo, R. & Zennaro, R. Fuel to liquids applied sciences for pure gasoline reserves valorization: the Eni expertise. Catal. In the present day 142, 9–16 (2009).


Antonini, A. M., Mercer, R. J. & Neale, A. F. Catalysts helps. US patent software 20160375424 A1 (2016).


Ortego, J. D. Jr, Jothimurugesan, Ok., Espinoza, R. L., Coy, Ok. L. & Ortego, B. C. Fischer–Tropsch processes and catalysts utilizing stabilized helps. US patent 7,071,239 B2 (2006)


Enger, B. C., Fossan, A.-L., Borg, Ø., Rytter, E. & Holmen, A. Modified alumina as catalyst help for cobalt within the Fischer–Tropsch synthesis. J. Catal. 284, 9–22 (2011).


Maciver, D. S., Tobin, H. H. & Barth, R. T. Catalytic aluminas I. Floor chemistry of eta and gamma alumina. J. Catal. 2, 485–497 (1963).


Bhasin M. M. & Jarell, M. S. Catalysts comprising considerably pure alpha alumina service for treating exhaust gases. US patent 5,856,263 (1999).


Johnson, B. R. et al. Engineered SMR catalysts based mostly on hydrothermally steady, porous, ceramic helps for microchannel reactors. Catal. In the present day 120, 54–62 (2007).


Munirathinam, R., Pham Minh, D. & Nzihou, A. Impact of the help and its floor modifications in cobalt-based Fischer–Tropsch synthesis. Ind. Eng. Chem. Res. 57, 16137–16161 (2018).


Eri, S., Kinnari, Ok. J., Schanke, D. & Hilmen, A.-M. Fischer–Tropsch catalyst, preparation and use thereof. US patent 7,351,679 (2008).


Ellis, P. R. Cobalt catalyst precursor. Worldwide Patent Software WO 2010/049715A1 (2010).


Lok, C. M., Kelly, G. J. & Grey, G. Catalysts with excessive cobalt floor space. US patent 6,927,190 B2 (2005).


Lok, C. M. Novel extremely dispersed cobalt catalysts for improved Fischer–Tropsch productiveness. Stud. Surf. Sci. Catal. 147, 283–288 (2004).


Schlessinger, G., Simmons, J. W., Jabs, G. & Chamberlain, M. M. Carbonatotetramminecobalt(iii) nitrate. Inorg. Synth. 6, 173–175 (1966).


Schanke, D. et al. Examine of Pt-promoted cobalt CO hydrogenation catalysts. J. Catal. 156, 85–95 (1995).


Eschemann, T. O. et al. Impact of help floor remedy on the synthesis, construction and efficiency of Co/CNT Fischer Tropsch catalysts. J. Catal. 328, 130–138 (2015).


Eschemann, T. O. & de Jong, Ok. P. Deactivation conduct of Co/TiO2 catalysts throughout Fischer–Tropsch synthesis. ACS Catal. 5, 3181–3188 (2015).


Zhao, Y.-H. et al. Direct synthesis of the decreased Co-C/SiO2 as an environment friendly catalyst for Fischer–Tropsch synthesis. Ind. Eng. Chem. Res. 57, 1137–1145 (2018).


Iglesia, E. Design, synthesis and use of cobalt-based Fischer–Tropsch synthesis catalysts. Appl. Catal. A 161, 59–78 (1997).


Houska, C. R., Averbach, B. L. & Cohen, M. The cobalt transformation. Acta Metall. eight, 81–87 (1960).


Andreev, A. S., d’Espinose de Lacaillerie, J.-B., Lapina, O. B. & Gerashenko, A. Thermal stability and hcp–fcc allotropic transformation in supported Co steel catalysts probed close to operando by ferromagnetic NMR. Phys. Chem. Chem. Phys. 17, 14598–14604 (2015).


Value, S. W. T. et al. Chemical imaging of Fischer–Tropsch catalysts underneath working circumstances. Sci. Adv. three, e1602838 (2017).


Boudart, M. & McDonald, M. A. Construction sensitivity of hydrocarbon synthesis from carbon monoxide and hydrogen. J. Phys. Chem. 88, 2185–2195 (1984).


Fu, L. & Bartholomew, C. H. Construction sensitivity and its results on product distribution in CO hydrogenation on cobalt/alumina. J. Catal. 92, 376–387 (1985).


Wang, Z.-j, Liu, C.-j & Goodman, D. W. Floor science research on cobalt Fischer–Tropsch catalysts. ChemCatChem three, 551–559 (2011).


van Helden, P., Ciobîcă, I. M. & Coetzer, R. L. J. The scale dependent web site composition of FCC cobalt nanocrystals. Catal. In the present day 261, 48–59 (2016).


den Breejen, J. P. et al. On the origin of the cobalt particle measurement results in Fischer–Tropsch catalysis. J. Am. Chem. Soc. 131, 7197–7203 (2009).


Cheng, J. et al. A quantitative dedication of response mechanisms from density purposeful idea calculations: Fischer–Tropsch synthesis on flat and stepped cobalt surfaces. J. Catal. 254, 285–295 (2008).


Huo, C.-F., Li, Y.-W., Wang, J. & Jiao, H. Formation of CHx species from CO dissociation on double-stepped Co(0001): exploring Fischer–Tropsch mechanism. J. Phys. Chem. C 112, 14108–14116 (2008).


Tsakoumis, N. E. et al. Fischer–Tropsch synthesis: an XAS/XRPD mixed in situ research from catalyst activation to deactivation. J. Catal. 291, 138–148 (2012).


Cats, Ok. H. & Weckhuysen, B. M. Mixed operando X-ray diffraction/Raman spectroscopy of catalytic solids within the laboratory: the Co/TiO2 Fischer–Tropsch synthesis catalyst showcase. ChemCatChem eight, 1531–1542 (2016).


Andreev, A. S., Lapina, O. B., d’Espinse de Lacaillerie, J.-B. & Khassin, A. A. Impact of alumina modification on the construction of cobalt-containing Fischer–Tropsch synthesis catalysts in accordance with inside discipline 59Co NMR. Information J. Struct. Chem. 54, S102–S110 (2013).


Enache, D. I., Rebours, B., Roy-Auberger, M. & Revel, R. In-situ XRD research of the affect of thermal remedy on the traits and the catalytic properties of cobalt-based Fischer–Tropsch catalysts. J. Catal. 205, 346–353 (2002).


Karaca, H. et al. Construction and catalytic efficiency of Pt-promoted alumina-supported cobalt catalysts underneath lifelike circumstances of Fischer–Tropsch synthesis. J. Catal. 277, 14–26 (2011).


Xia, Y., Dai, H., Jiang, H. & Zhang, L. Three-dimensional ordered mesoporous cobalt oxides: extremely energetic catalysts for the oxidation of toluene and methanol. Catal. Commun. 11, 1171–1175 (2010).


van de Loosdrecht, J., Barradas, S., van Berge, P. J. & Visagie, J. L. Help modification of cobalt based mostly slurry section Fischer–Tropsch catalysts. ACS Div. Gasoline Chem. Prepr. 45, 587–591 (2000).


Jacobs, G. et al. Fischer–Tropsch synthesis: temperature programmed EXAFS/XANES investigation of the affect of help sort, cobalt loading, and noble steel promoter addition to the discount conduct of cobalt oxide particles. Appl. Catal. A 333, 177–191 (2007).


Magrini-Bair, Ok. A. et al. Fluidizable reforming catalyst improvement for conditioning biomass-derived syngas. Appl. Catal. A 318, 199–206 (2007).


Greenwood, N. N. & Earnshaw, A. in Chemistry of the Parts 273–277 (Pergamon Press, 1984).


Magistro, A. J. Attrition resistant catalyst help. US patent 5,zero37,794 (1991).


ASTM D5757-95: Commonplace Check Methodology for Dedication of Attrition and Abrasion of Powdered Catalysts by Air Jets (ASTM, 1995).


de Klerk, A. Fischer–Tropsch fuels refinery design. Power Environ. Sci. four, 1177 (2011).


Dalai, A. Ok. & Davis, B. H. Fischer–Tropsch synthesis: a overview of water results on the performances of unsupported and supported Co catalysts. Appl. Catal. A 348, 1–15 (2008).


Roth, W. L. J. The magnetic construction of Co3O4. J. Phys. Chem. Solids 25, 1–10 (1964).


Sadeqzadeh, M. et al. Deactivation of a Co/Al2O3 Fischer–Tropsch catalyst by water-induced sintering in slurry reactor: modeling and experimental investigations. Catal. In the present day 215, 52–59 (2013).


Hosseini, S. A., Taeb, A., Feyzi, F. & Yaripour, F. Fischer–Tropsch synthesis over Ru-promoted Co/γ-Al2O3 catalysts in a CSTR. Catal. Commun. 5, 137–143 (2004).


Li, J. et al. Fischer–Tropsch synthesis: impact of water on the deactivation of Pt promoted Co/Al2O3 catalysts. Appl. Catal. A 228, 203–212 (2002).


Gnanamani, M. Ok. et al. Ga and In modified ceria as helps for cobalt-catalyzed Fischer Tropsch synthesis. Appl. Catal. A 547, 115–123 (2017).


Ma, W. et al. Fischer–Tropsch synthesis: kinetics and water impact research over 25% Co/Al2O3 catalysts. Catal. In the present day 228, 158–166 (2014).


Eri, S., Kinnari, Ok. J., Schanke, D. & Hilmen, A.-M. Fischer–Tropsch catalyst with low floor space alumina, its preparation and use thereof. US patent software 2004/0077737A1 (2004).


Lögdberg, S. et al. Impact of water on the space-time yield of various supported cobalt catalysts throughout Fischer Tropsch synthesis. Appl. Catal. A 393, 109–121 (2011).


Moodley, D. J. et al. Carbon deposition as a deactivation mechanism of cobalt-based Fischer–Tropsch synthesis catalysts underneath lifelike circumstances. Appl. Catal. A 354, 102–110 (2009).


Jacobs, G., Patterson, P. M., Das, T. Ok., Luo, M. & Davis, B. H. Fischer–Tropsch synthesis: impact of water on Co/Al2O3 catalysts and XAFS characterization of reoxidation phenomena. Appl. Catal. A Gen. 270, 65–76 (2004).


Tsakoumis, N. E., Rønning, M., Borg, Ø., Rytter, E. & Holmen, A. Deactivation of cobalt-based Fischer–Tropsch catalysts: a overview. Catal. In the present day 154, 162–182 (2010).


van Berge, P. J., van de Loosdrecht, J., Barradas, S. & van der Kraan, A. M. Oxidation of cobalt based mostly Fischer–Tropsch catalysts as a deactivation mechanism. Catal. In the present day 58, 321–334 (2000).


Saib, A. M. et al. Elementary understanding of deactivation and regeneration of cobalt Fischer–Tropsch synthesis catalysts. Catal. In the present day 154, 271–282 (2010).


Clarkson, J. et al. Deactivation of alumina supported cobalt FT catalysts throughout testing in a continuous-stirred tank reactor. Appl. Catal. A 550, 28–37 (2018).


Overett, M. J., Breedt, B., du Plessis, E., Erasmus, W. & van de Loosdrecht, J. Sintering as a deactivation mechanism for an alumina supported cobalt Fischer Tropsch synthesis catalyst. Prep. Pap. Am. Chem. Soc. Div. Petr. Chem. 53, 126–128 (2008).


Munnik, P., de Jongh, P. E. & de Jong, Ok. P. Management and influence of the nanoscale distribution of supported cobalt particles utilized in Fischer–Tropsch catalysis. J. Am. Chem. Soc. 136, 7333–7340 (2014).


Chambrey, S. et al. Fischer Tropsch synthesis in milli-fixed mattress reactor: comparability with centrimetric mounted mattress and slurry stirred tank reactors. Catal. In the present day 171, 201–206 (2011).


Reuel, R. & Bartholomew, C. H. The stoichiometries of H2 and CO adsorptions on cobalt: results of help and preparation. J. Catal. 85, 63–77 (1984).

Supply hyperlink

wordpress autoblog

amazon autoblog

affiliate autoblog

wordpress web site

web site improvement

Show More

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *