Chemistry

Acceleration of dolomitization by zinc in saline waters


1.

Falkowski, P. et al. The worldwide carbon cycle: a check of our data of earth as a system. Science 290, 291–296 (2000).

2.

Frank, D. C. et al. Ensemble reconstruction constraints on the worldwide carbon cycle sensitivity to local weather. Nature 463, 527–U143 (2010).

three.

McKenzie, J. A. In Controversies in Fashionable Geology: Evolution of Geochemical Theories in Sedimentology, Earth Historical past and Tectonics (eds Müller, D. W., McKenzie, J. A. & Weissert, H.) 37–54 (Educational Press, Cambridge, MA, 1991).

four.

Warren, J. Dolomite: prevalence, evolution and economically essential associations. Earth-Sci. Rev. 52, 1–81 (2000).

5.

Sibley, D. F., Dedoes, R. E. & Bartlett, T. R. Kinetics of dolomitization. Geology 15, 1112–1114 (1987).

6.

Brady, P. V., Krumhansl, J. L. & Papenguth, H. W. Floor complexation clues to dolomite progress. Geochim. Et. Cosmochim. Acta 60, 727–731 (1996).

7.

Xu, J. et al. Testing the cation-hydration impact on the crystallization of Ca-Mg-CO3 programs. Proc. Natl Acad. Sci. USA 110, 17750–17755 (2013).

Eight.

Hong, M., Xu, J. & Teng, H. H. Evolution of calcite progress morphology within the presence of magnesium: implications for the dolomite downside. Geochim. Et. Cosmochim. Acta 172, 55–64 (2016).

9.

Davis, Ok. J., Dove, P. M. & De Yoreo, J. J. The function of Mg2+ as an impurity in calcite progress. Science 290, 1134–1137 (2000).

10.

Fenter, P. et al. Construction and reactivity of the dolomite (104)-water interface: new insights into the dolomite downside. Geochim. Et. Cosmochim. Acta 71, 566–579 (2007).

11.

Astilleros, J. M., Fernandez-Diaz, L. & Putnis, A. The function of magnesium within the progress of calcite: an AFM research. Chem. Geol. 271, 52–58 (2010).

12.

Gregg, J. M., Bish, D. L., Kaczmarek, S. E. & Machel, H. G. Mineralogy, nucleation and progress of dolomite within the laboratory and sedimentary setting: a evaluate. Sedimentology 62, 1749–1769 (2015).

13.

Zhang, F. et al. Dissolved sulfide-catalyzed precipitation of disordered dolomite: Implications for the formation mechanism of sedimentary dolomite. Geochim. Et. Cosmochim. Acta 97, 148–165 (2012).

14.

Baker, P. A. & Kastner, M. Constraints on the formation of sedimentary dolomite. Science 213, 214–216 (1981).

15.

Petrash, D. A. et al. Microbially catalyzed dolomite formation: From near-surface to burial. Earth-Sci. Rev. 171, 558–582 (2017).

16.

Sánchez-Román, M., McKenzie, J. A., Wagener, A., Rivadeneyra, M. A. & Vasconcelos, C. Presence of sulfate doesn’t inhibit low-temperature dolomite precipitation. Earth Planet. Sci. Lett. 285, 131–139 (2009).

17.

Brady, P. V., Papenguth, H. W. & Kelly, J. W. Steel sorption to dolomite surfaces. Appl. Geochem. 14, 569–579 (1999).

18.

Vasconcelos, C., McKenzie, J. A., Bernasconi, S., Grujic, D. & Tien, A. J. Microbial mediation as a doable mechanism for pure dolomite formation at low temperatures. Nature 377, 220–222 (1995).

19.

Krause, S. et al. Microbial nucleation of Mg-rich dolomite in exopolymeric substances beneath anoxic trendy seawater salinity: New perception into an previous enigma. Geology 40, 587–590 (2012).

20.

Zhang, F. et al. The catalytic impact of certain extracellular polymeric substances excreted by anaerobic microorganisms on Ca-Mg carbonate precipitation: implications for the “dolomite downside”. Am. Mineral. 100, 483–494 (2015).

21.

Roberts, J. A. et al. Floor chemistry permits for abiotic precipitation of dolomite at low temperature. Proc. Natl Acad. Sci. USA 110, 14540–14545 (2013).

22.

Shelton, Ok. L., Gregg, J. M. & Johnson, A. W. Alternative dolomites and ore sulfides as recorders of a number of fluids and fluid sources within the Southeast Missouri Mississippi Valley-Sort District: halogen-Sr-87/Sr-86-delta O-18-delta S-34 systematics within the Bonneterre Dolomite. Econ. Geol. 104, 733–748 (2009).

23.

Wilkinson, J. J., Stoffell, B., Wilkinson, C. C., Jeffries, T. E. & Appold, M. S. Anomalously metal-rich fluids kind hydrothermal ore deposits. Science 323, 764–767 (2009).

24.

Vandeginste, V. et al. Geochemical constraints on the origin of the Kicking Horse and Monarch Mississippi Valley-type lead-zinc ore deposits, southeast British Columbia, Canada. Miner. Depos. 42, 913–935 (2007).

25.

Smith, D. W. Ionic hydration enthalpies. J. Chem. Educ. 54, 540–542 (1977).

26.

Chi, T. et al. A Drosophila mannequin identifies a essential function for zinc in mineralization for kidney stone illness. Plos One 10, e0124150 (2015).

27.

Mansfield, C. F. A urolith of biogenic dolomite – one other clue within the dolomite thriller. Geochim. Et. Cosmochim. Acta 44, 829–839 (1980).

28.

Mueller, W. E. G. et al. Enzyme-accelerated and structure-guided crystallization of calcium carbonate: function of the carbonic anhydrase within the homologous system. Acta Biomater. 10, 450–462 (2014).

29.

Molva, M., Kilic, S. & Ozdemir, E. Impact of carbonic anhydrase on CaCO3 crystallization in alkaline answer. Vitality Fuels 30, 10686–10695 (2016).

30.

Boni, M. & Mondillo, N. The “Calamines” and the “Others”: The nice household of supergene nonsulfide zinc ores. Ore Geol. Rev. 67, 208–233 (2015).

31.

Boni, M., Mondillo, N. & Balassone, G. Zincian dolomite: a peculiar dedolomitization case? Geology 39, 183–186 (2011).

32.

Putnis, A. Why mineral interfaces matter. Science 343, 1441–1442 (2014).

33.

Etschmann, B. et al. Grain boundaries as microreactors throughout reactive fluid movement: experimental dolomitization of a calcite marble. Contributions Mineral. Petrol. 168, https://doi.org/10.1007/s00410-Zero14-1045-z (2014).

34.

Rodriguez-Blanco, J. D., Shaw, S. & Benning, L. G. A route for the direct crystallization of dolomite. Am. Mineral. 100, 1172–1181 (2015).

35.

Kaczmarek, S. E. & Sibley, D. F. On the evolution of dolomite stoichiometry and cation order throughout high-temperature synthesis experiments: an alternate mannequin for the geochemical evolution of pure dolomites. Sediment. Geol. 240, 30–40 (2011).

36.

Xia, F. et al. Mechanism and kinetics of pseudomorphic mineral alternative reactions: a case research of the alternative of pentlandite by violarite. Geochim. Et. Cosmochim. Acta 73, 1945–1969 (2009).

37.

Sibley, D. F. Unstable to steady transformations throughout dolomitization. J. Geol. 98, 739–748 (1990).

38.

Avrami, M. Kinetics of part change. I Normal idea. J. Chem. Phys. 7, 1103–1112 (1939).

39.

Sjoberg, E. L. & Rickard, D. T. Temperature dependance of calcite dissolution kinetics between 1 diploma C and 62 levels C at pH of two.7 to eight.four in aqueous options. Geochim. Et. Cosmochim. Acta 48, 485–493 (1984).

40.

Colombani, J. The alkaline dissolution charge of calcite. J. Phys. Chem. Lett. 7, 2376–2380 (2016).

41.

Krezel, A. & Maret, W. The organic inorganic chemistry of zinc ions. Arch. Biochem. Biophys. 611, three–19 (2016).

42.

de Leeuw, N. H. & Parker, S. C. Floor-water interactions within the dolomite downside. Phys. Chem. Chem. Phys. three, 3217–3221 (2001).

43.

Gaines, A. M. Protodolomite synthesis at 100 °C and atmospheric strain. Science 183, 518–520 (1974).

44.

Mei, Y. et al. Zinc complexation in chloride-rich hydrothermal fluids (25–600 °C): A thermodynamic mannequin derived from ab initio molecular dynamics. Geochim. Et. Cosmochim. Acta 150, 265–284 (2015).

45.

Reid, S., Dewing, Ok. & Sharp, R. Polaris as a information to northern exploration: ore textures, paragenesis and the origin of the carbonate-hosted Polaris Zn-Pb Mine, Nunavut, Canada. Ore Geol. Rev. 51, 27–42 (2013).

46.

Symons, D. T. A., Tornos, F., Kawasaki, Ok., Velasco, F. & Rosales, I. Genetic constraints from paleomagnetic courting for the Aliva zinc-lead deposit, Picos de Europa Unit, northern Spain. Miner. Depos. 50, 953–966 (2015).

47.

Leach, D. L. et al. Sediment-hosted lead-zinc deposits: a worldwide perspective. Econ. Geol. 100, 561–607 (2005).

48.

Paradis, S., Hannigan, P. & Dewing, Ok. In Mineral Deposits of Canada: A Synthesis of Main Deposit-types, Sitrict Metallogeny, The Evolution of Geological Provinces, and Exploration Strategies Vol. 5 (ed Goodfellow, W. D.) 185–203 (Geological Affiliation of Canada, Mineral Deposits Division, Particular Publication, 2007).

49.

Bertucci, A. et al. Carbonic anhydrases in anthozoan corals-A evaluate. Bioorg. Med. Chem. 21, 1437–1450 (2013).

50.

Le Roy, N., Jackson, D. J., Marie, B., Ramos-Silva, P. & Marin, F. The evolution of metazoan alpha-carbonic anhydrases and their roles in calcium carbonate biomineralization. Entrance. Zool. 11, https://doi.org/10.1186/s12983-Zero14-0075-Eight (2014).

51.

Redmile-Gordon, M. & Chen, L. Zinc toxicity stimulates microbial manufacturing of extracellular polymers in a copiotrophic acid soil. Int. Biodeter. Biodegr. 119, 413–418 (2017).

52.

Morel, F. M. M. et al. Zinc and carbon co-limitation of marine-phytoplankton. Nature 369, 740–742 (1994).

53.

Wyatt, N. J. et al. Biogeochemical biking of dissolved zinc alongside the GEOTRACES South Atlantic transect GA10 at 40 S. Glob. Biogeochem. Cycles 28, 44–56 (2014).

54.

Schrag, D. P., Higgins, J. A., Macdonald, F. A. & Johnston, D. T. Authigenic carbonate and the historical past of the worldwide carbon cycle. Science 339, 540–543 (2013).

55.

Wilson, R. W. et al. Contribution of fish to the marine inorganic carbon cycle. Science 323, 359–362 (2009).

56.

Diaz-Pulido, G. et al. Greenhouse situations induce mineralogical adjustments and dolomite accumulation in coralline algae on tropical reefs. Nat. Commun. 5, https://doi.org/10.1038/ncomms4310 (2014).


Supply hyperlink
asubhan

wordpress autoblog

amazon autoblog

affiliate autoblog

wordpress web site

web site growth

Show More

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Close