Chemistry

Aridity and diminished soil micronutrient availability in world drylands


1.

Prăvălie, R. Drylands extent and environmental points. A worldwide strategy. Earth Sci. Rev. 161, 259–278 (2016).

2.

Schimel, D. S. Drylands within the Earth system. Science 327, 418–419 (2010).

three.

Fu, Q. & Feng, S. Responses of terrestrial aridity to world warming. J. Geophys. Res. Atmos. 119, 7863–7875 (2014).

four.

Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland enlargement beneath local weather change. Nat. Clim. Change 6, 166–171 (2016).

5.

Maestre, F. T. et al. Construction and functioning of dryland ecosystems in a altering world. Annu. Rev. Ecol. Evol. Syst. 47, 215–237 (2016).

6.

Yuan, Z. et al. Experimental and observational research discover contrasting responses of soil vitamins to local weather change. eLife 6, e23255 (2017).

7.

Luo, W. et al. Thresholds in decoupled soil–plant components beneath altering weather conditions. Plant Soil 409, 159–173 (2016).

eight.

Marschner, B. & Kalbitz, Okay. Controls of bioavailability and biodegradability of dissolved natural matter in soils. Geoderma 113, 211–235 (2003).

9.

Bowker, M. A., Belnap, J., Davidson, D. W. & Goldstein, H. Correlates of organic soil crust abundance throughout a continuum of spatial scales: assist for a hierarchical conceptual mannequin. J. Appl. Ecol. 43, 152–163 (2006).

10.

Broadley, M., Brown, P., Cakmak, I., Rengel, Z. & Zhao, F. in Marschner’s Mineral Vitamin of Increased Crops 191–248 (Educational Press, 2012).

11.

Welch, R. M. & Shuman, L. Micronutrient vitamin of vegetation. CRC. Crit. Rev. Plant Sci. 14, 49–82 (1995).

12.

Sherman, A. R. Zinc, copper, and iron nutriture and immunity. J. Nutr. 122, 604–609 (1992).

13.

Thompson, B. & Amoroso, L. Combating Micronutrient Deficiencies: Meals-based Approaches (CABI, 2010).

14.

Spears, J. W. Micronutrients and immune perform in cattle. Proc. Nutr. Soc. 59, 587–594 (2000).

15.

Jones, G. D. et al. Selenium deficiency danger predicted to extend beneath future local weather change. Proc. Natl Acad. Sci. USA 114, 2484–2853 (2017).

16.

McBride, M. B. in Advances in Soil Science (ed. Stewart, B. A.) 1–56 (Springer New York, 1989).

17.

Kabata-Pendias, A. Soil–plant switch of hint components—an environmental problem. Geoderma 122, 143–149 (2004).

18.

Plaza, C. et al. Soil assets and component shares in drylands to face world points. Sci. Rep. eight, 13788 (2018).

19.

Ptacnik, R. et al. Purposes of ecological stoichiometry for sustainable acquisition of ecosystem providers. Oikos 109, 52–62 (2005).

20.

Sardans, J., Rivas-Ubach, A. & Peñuelas, J. The C:N:P stoichiometry of organisms and ecosystems in a altering world: a assessment and views. Perspect. Plant Ecol. Evol. Syst. 14, 33–47 (2012).

21.

Robinson, L. W., Ericksen, P. J., Chesterman, S. & Worden, J. S. Sustainable intensification in drylands: what resilience and vulnerability can inform us. Agric. Syst. 135, 133–140 (2015).

22.

Adeel, Z., Safriel, U., Niemeijer, D. & White, R. Ecosystems and Human Effectively-being: Desertification Synthesis (World Assets Institute, 2005).

23.

Reynolds, J. F. et al. World desertification: constructing a science for dryland improvement. Science 316, 847–851 (2007).

24.

Delgado-Baquerizo, M. et al. Decoupling of soil nutrient cycles as a perform of aridity in world drylands. Nature 502, 672–676 (2013).

25.

Kabata-Pendias, A. & Pendias, H. Hint Components in Soils and Crops (CRC Press, 2001).

26.

Lindsay, W. L. Chemical Equilibria in Soils (John Wiley and Sons, 1979).

27.

Garnett, T. et al. Sustainable intensification in agriculture: premises and insurance policies. Science 341, 33–34 (2013).

28.

Gupta, U. C., Wu, Okay. & Liang, S. Micronutrients in soils, crops, and livestock. Earth Sci. Entrance. 15, 110–125 (2008).

29.

Graham, T. W. Hint component deficiencies in cattle. Vet. Clin. North Am. Meals Anim. Pract. 7, 153–215 (1991).

30.

Luo, W. et al. A threshold reveals decoupled relationship of sulfur with carbon and nitrogen in soils throughout arid and semi-arid grasslands in northern China. Biogeochemistry 127, 141–153 (2016).

31.

Sardans, J. & Peñuelas, J. Potassium: a uncared for nutrient in world change. Glob. Ecol. Biogeogr. 24, 261–275 (2015).

32.

Kobayashi, T. & Nishizawa, N. Okay. Iron uptake, translocation, and regulation in increased vegetation. Annu. Rev. Plant Biol. 63, 131–152 (2012).

33.

Marschner, H., Römheld, V. & Kissel, M. Totally different methods in increased vegetation in mobilization and uptake of iron. J. Plant Nutr. 9, 695–713 (1986).

34.

Kim, S. A. & Guerinot, M. L. Mining iron: iron uptake and transport in vegetation. FEBS Lett. 581, 2273–2280 (2007).

35.

Ulrich, W. et al. Local weather and soil attributes decide plant species turnover in world drylands. J. Biogeogr. 41, 2307–2319 (2014).

36.

Shipley, B. Confirmatory path evaluation in a generalized multilevel context. Ecology 90, 363–368 (2009).

37.

Dregne, H. E. Soils of Arid Areas Vol. 6 (Elsevier, 1976).

38.

Kleber, M. et al. Chapter one—mineral–natural associations: formation, properties, and relevance in soil environments. Adv. Agron. 130, 1–140 (2015).

39.

Safriel, U. & Adeel, Z. in Ecosystems and Human Effectively-being: Present State and Developments (eds Hassan, R., Scholes, R. & Ash, N.) 625–658 (Island Press, 2005).

40.

Brady, N. C. & Weil, R. R. The Nature and Properties of Soils (Pearson Schooling, 2016).

41.

Loveland, P. & Webb, J. Is there a essential degree of natural matter within the agricultural soils of temperate areas: a assessment. Soil Tillage Res. 70, 1–18 (2003).

42.

Carter, M. R. & Stewart, B. A. Construction and Natural Matter Storage in Agricultural Soils (CRC Press, 1995).

43.

Katyal, J. C. & Sharma, B. D. DTPA-extractable and whole Zn, Cu, Mn, and Fe in Indian soils and their affiliation with some soil properties. Geoderma 49, 165–179 (1991).

44.

White, J. G. & Zasoski, R. J. Mapping soil micronutrients. Discipline Crops Res. 60, 11–26 (1999).

45.

Habiby, H., Afyuni, M., Khoshgoftarmanesh, A. H. & Schulin, R. Impact of previous crops and their residues on availability of zinc in a calcareous Zn-deficient soil. Biol. Fertil. Soils 50, 1061–1067 (2014).

46.

Jansen, B., Nierop, Okay. G. J. & Verstraten, J. M. Mechanisms controlling the mobility of dissolved natural matter, aluminium and iron in podzol B horizons. Eur. J. Soil Sci. 56, 537–550 (2005).

47.

Güngör, E. B. Ö. & Bekbölet, M. Zinc launch by humic and fulvic acid as influenced by pH, complexation and DOC sorption. Geoderma 159, 131–138 (2010).

48.

He, Z. L., Yang, X. E. & Stoffella, P. J. Hint components in agroecosystems and impacts on the setting. J. Hint Elem. Med. Biol. 19, 125–140 (2005).

49.

Sauvé, S., Hendershot, W. & Allen, H. E. Strong-solution partitioning of metals in contaminated soils: dependence on pH, whole metallic burden, and natural matter. Environ. Sci. Technol. 34, 1125–1131 (2000).

50.

Bradl, H. B. Adsorption of heavy metallic ions on soils and soils constituents. J. Colloid Interface Sci. 277, 1–18 (2004).

51.

Sims, J. T. Soil pH results on the distribution and plant availability of manganese, copper, and zinc. Soil Sci. Soc. Am. J. 50, 367–373 (1986).

52.

Kämpf, N. & Schwertmann, U. Goethite and hematite in a climosequence in southern Brazil and their software in classification of kaolinitic soils. Geoderma 29, 27–39 (1983).

53.

Voegelin, A., Pfister, S., Scheinost, A. C., Marcus, M. A. & Kretzschmar, R. Adjustments in zinc speciation in subject soil after contamination with zinc oxide. Environ. Sci. Technol. 39, 6616–6623 (2005).

54.

Slessarev, E. W. et al. Water steadiness creates a threshold in soil pH on the world scale. Nature 540, 567–569 (2016).

55.

Maestre, F. T., Salguero-Gómez, R. & Quero, J. L. It’s getting hotter in right here: figuring out and projecting the impacts of world environmental change on drylands. Philos. Trans. R. Soc. Lond. B. 367, 3062–3075 (2012).

56.

Palmgren, M. G. et al. Zinc biofortification of cereals: issues and options. Developments Plant Sci. 13, 464–473 (2008).

57.

White, P. J. & Broadley, M. R. Biofortifying crops with important mineral components. Developments Plant Sci. 10, 586–593 (2005).

58.

Zhao, F. J. et al. Variation in mineral micronutrient concentrations in grain of wheat strains of numerous origin. J. Cereal Sci. 49, 290–295 (2009).

59.

Gerland, P. et al. World inhabitants stabilization unlikely this century. Science 346, 234–237 (2014).

60.

Smith, M. R. & Myers, S. S. Impression of anthropogenic CO2 emissions on world human vitamin. Nat. Clim. Change eight, 834–839 (2018).

61.

Zomer, R. J., Trabucco, A., Bossio, D. A. & Verchot, L. V. Local weather change mitigation: a spatial evaluation of world land suitability for clear improvement mechanism afforestation and reforestation. Agric. Ecosyst. Environ. 126, 67–80 (2008).

62.

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very excessive decision interpolated local weather surfaces for world land areas. Int. J. Climatol. 25, 1965–1978 (2005).

63.

Anderson, J. M. & Ingram, J. S. I. Tropical Soil Biology and Fertility (CABI, 1989).

64.

Kettler, T. A., Doran, J. W. & Gilbert, T. L. Simplified technique for soil particle-size dedication to accompany soil-quality analyses. Soil Sci. Soc. Am. J. 65, 849–852 (2001).

65.

EPA Technique 3050B: Acid Digestion of Sediments, Sludges, and Soils (US Environmental Safety Company, 1996).

66.

Moreno-Jiménez, E. et al. Heavy metals distribution in soils surrounding an deserted mine in NW Madrid (Spain) and their transference to wild flora. J. Hazard. Mater. 162, 854–859 (2009).

67.

Madrid, F., Lopez, R. & Cabrera, F. Metallic accumulation in soil after software of municipal strong waste compost beneath intensive farming situations. Agric. Ecosyst. Environ. 119, 249–256 (2007).

68.

Moreno-Jiménez, E., Sepúlveda, R., Esteban, E. & Beesley, L. Effectivity of natural and mineral primarily based amendments to scale back metallic[loid]mobility and uptake (Lolium perenne) from a pyrite-waste contaminated soil. J. Geochem. Explor. 174, 46–52 (2017).

69.

Lindsay, W. L. & Norvell, W. A. Improvement of a DTPA soil take a look at for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 42, 421–428 (1978).

70.

Liang, J. & Karamanos, R. E. in Soil Sampling and Strategies of Evaluation (ed. Carter, M. R.) 87–90 (Lewis Publishers, 1993).

71.

De Santiago-Martín, A. et al. Bettering the connection between soil traits and metallic bioavailability through the use of reactive fractions of soil parameters in calcareous soils. Environ. Toxicol. Chem. 34, 37–44 (2015).

72.

Rosseel, Y. lavaan: an R bundle for structural equation modeling. J. Stat. Softw. 48, 1–36 (2012).

73.

R Improvement Core Workforce R: A Language and Setting for Statistical Computing (R Basis for Statistical Computing, 2014).


Supply hyperlink
asubhan

wordpress autoblog

amazon autoblog

affiliate autoblog

wordpress web site

web site improvement

Show More

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Close