Chemistry

Atg2 mediates direct lipid switch between membranes for autophagosome formation


1.

Mizushima, N., Yoshimori, T. & Ohsumi, Y. The function of Atg proteins in autophagosome formation. Annu. Rev. Cell. Dev. Biol. 27, 107–132 (2011).

2.

Hailey, D. W. et al. Mitochondria provide membranes for autophagosome biogenesis throughout hunger. Cell 141, 656–667 (2010).

Three.

Axe, E. L. et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol Three-phosphate and dynamically related to the endoplasmic reticulum. J. Cell Biol. 182, 685–701 (2008).

four.

Hamasaki, M. et al. Autophagosomes type at ER-mitochondria contact websites. Nature 495, 389–393 (2013).

5.

Puri, C. et al. The RAB11A-positive compartment is a main platform for autophagosome meeting mediated by WIPI2 recognition of PI3P-RAB11A. Dev. Cell 45, 114–131 e118 (2018).

6.

Ge, L. et al. Transforming of ER-exit websites initiates a membrane provide pathway for autophagosome biogenesis. EMBO Rep. 18, 1586–1603 (2017).

7.

Suzuki, Okay., Akioka, M., Kondo-Kakuta, C., Yamamoto, H. & Ohsumi, Y. Tremendous mapping of autophagy-related proteins throughout autophagosome formation in Saccharomyces cerevisiae. J. Cell Sci. 126, 2534–2544 (2013).

eight.

Gomez-Sanchez, R. et al. Atg9 establishes Atg2-dependent contact websites between the endoplasmic reticulum and phagophores. J. Cell Biol. 217, 2743–2763 (2018).

9.

Obara, Okay., Sekito, T., Niimi, Okay. & Ohsumi, Y. The Atg18-Atg2 advanced is recruited to autophagic membranes through phosphatidylinositol Three-phosphate and exerts a vital perform. J. Biol. Chem. 283, 23972–23980 (2008).

10.

Graef, M., Friedman, J. R., Graham, C., Babu, M. & Nunnari, J. ER exit websites are bodily and practical core autophagosome biogenesis elements. Mol. Biol. Cell 24, 2918–2931 (2013).

11.

Hirata, E., Ohya, Y. & Suzuki, Okay. Atg4 performs an vital function in environment friendly growth of autophagic isolation membranes by cleaving lipidated Atg8 in Saccharomyces cerevisiae. PLoS One 12, e0181047 (2017).

12.

Chowdhury, S. et al. Insights into autophagosome biogenesis from structural and biochemical analyses of the ATG2A-WIPI4 advanced. Proc. Natl Acad. Sci. USA 115, E9792–E9801 (2018).

13.

Zheng, J. X. et al. Structure of the ATG2B-WDR45 advanced and an fragrant Y/HF motif essential for advanced formation. Autophagy 13, 1870–1883 (2017).

14.

Lang, A. B., John Peter, A. T., Walter, P. & Kornmann, B. ER-mitochondrial junctions might be bypassed by dominant mutations within the endosomal protein Vps13. J. Cell Biol. 210, 883–890 (2015).

15.

Kotani, T., Kirisako, H., Koizumi, M., Ohsumi, Y. & Nakatogawa, H. The Atg2-Atg18 advanced tethers pre-autophagosomal membranes to the endoplasmic reticulum for autophagosome formation. Proc. Natl Acad. Sci. USA 115, 10363–10368 (2018).

16.

Wong, L. H., Copic, A. & Levine, T. P. Advances on the switch of lipids by lipid switch proteins. Developments Biochem. Sci. 42, 516–530 (2017).

17.

Reinisch, Okay. M. & De Camilli, P. SMP-domain proteins at membrane contact websites: construction and performance. Biochim. Biophys. Acta 1861, 924–927 (2016).

18.

Jeong, H., Park, J. & Lee, C. Crystal construction of Mdm12 reveals the structure and dynamic group of the ERMES advanced. EMBO Rep. 17, 1857–1871 (2016).

19.

Kawano, S. et al. Construction–perform insights into direct lipid switch between membranes by Mmm1–Mdm12 of ERMES. J. Cell Biol. 217, 959–974 (2018).

20.

Toulmay, A. & Prinz, W. A. A conserved membrane-binding area targets proteins to organelle contact websites. J. Cell Sci. 125, 49–58 (2012).

21.

Kumar, N. et al. VPS13A and VPS13C are lipid transport proteins differentially localized at ER contact websites. J. Cell Biol. 217, 3625–3639 (2018).

22.

Lemus, L., Ribas, J. L., Sikorska, N. & Goder, V. An ER-localized SNARE protein is exported in particular COPII vesicles for autophagosome biogenesis. Cell Rep. 14, 1710–1722 (2016).

23.

Davis, S., Wang, J. & Ferro-Novick, S. Crosstalk between the secretory and autophagy pathways regulates autophagosome formation. Dev. Cell 41, 23–32 (2017).

24.

Yla-Anttila, P., Vihinen, H., Jokitalo, E. & Eskelinen, E. L. 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy 5, 1180–1185 (2009).

25.

Hayashi-Nishino, M. et al. A subdomain of the endoplasmic reticulum types a cradle for autophagosome formation. Nat. Cell Biol. 11, 1433–1437 (2009).

26.

Baba, M., Osumi, M. & Ohsumi, Y. Evaluation of the membrane buildings concerned in autophagy in yeast by freeze-replica technique. Cell Struct. Funct. 20, 465–471 (1995).

27.

Toulmay, A. & Prinz, W. A. Lipid switch and signaling at organelle contact websites: the tip of the iceberg. Curr. Opin. Cell Biol. 23, 458–463 (2011).

28.

Sperandeo, P., Martorana, A. M. & Polissi, A. The lipopolysaccharide transport (Lpt) equipment: a nonconventional transporter for lipopolysaccharide meeting on the outer membrane of Gram-negative micro organism. J. Biol. Chem. 292, 17981–17990 (2017).

29.

Okuda, S., Freinkman, E. & Kahne, D. Cytoplasmic ATP hydrolysis powers transport of lipopolysaccharide throughout the periplasm in E. coli. Science 338, 1214–1217 (2012).

30.

Sherman, D. J. et al. Lipopolysaccharide is transported to the cell floor by a membrane-to-membrane protein bridge. Science 359, 798–801 (2018).

31.

Matsuyama, A. et al. ORFeome cloning and international evaluation of protein localization within the fission yeast Schizosaccharomyces pombe. Nat. Biotechnol. 24, 841–847 (2006).

32.

Otwinowski, Z. & Minor, W. Processing of X-ray diffraction information collected in oscillation mode. Strategies Enzymol. 276, 307–326 (1997).

33.

Adams, P. D. et al. PHENIX: a complete Python-based system for macromolecular construction resolution. Acta Crystallogr. D 66, 213–221 (2010).

34.

Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, Okay. Options and growth of Coot. Acta Crystallogr. D 66, 486–501 (2010).

35.

Delano, W. L. The PyMOL Molecular Graphics System (DeLano Scientific LLC, Palo Alto, CA, 2002).

36.

Schneider, C. A., Rasband, W. S. & Eliceiri, Okay. W. NIH Picture to ImageJ: 25 years of picture evaluation. Nat. Strategies 9, 671–675 (2012).

37.

Kawaoka, T., Ohnuki, S., Ohya, Y. & Suzuki, Okay. Morphometric evaluation of autophagy-related buildings in Saccharomyces cerevisiae. Autophagy 13, 2104–2110 (2017).

38.

Noda, T., Matsuura, A., Wada, Y. & Ohsumi, Y. Novel system for monitoring autophagy within the yeast Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 210, 126–132 (1995).

39.

Horvath, A. & Riezman, H. Speedy protein extraction from Saccharomyces cerevisiae. Yeast 10, 1305–1310 (1994).

40.

Suzuki, Okay., Kamada, Y. & Ohsumi, Y. Research of cargo supply to the vacuole mediated by autophagosomes in Saccharomyces cerevisiae. Dev. Cell Three, 815–824 (2002).


Supply hyperlink
asubhan

wordpress autoblog

amazon autoblog

affiliate autoblog

wordpress web site

web site growth

Show More

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Close