Chemistry

BAF advanced vulnerabilities in most cancers demonstrated through structure-based PROTAC design


1.

Toure, M. & Crews, C. M. Small-molecule PROTACS: new approaches to protein degradation. Angew. Chemie Int. 55, 1966–1973 (2016).

2.

Collins, I., Wang, H., Caldwell, J. J. & Chopra, R. Chemical approaches to focused protein degradation via modulation of the ubiquitin–proteasome pathway. Biochem. J. 474, 1127–1147 (2017).

Three.

Hughes, S. J. & Ciulli, A. Molecular recognition of ternary complexes: a brand new dimension within the structure-guided design of chemical degraders. Essays Biochem. 61, 505–516 (2017).

Four.

Bondeson, D. P. et al. Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat. Chem. Biol. 11, 611–617 (2015).

5.

Winter, G. E. et al. Phthalimide conjugation as a technique for in vivo goal protein degradation. Science 348, 1376–1381 (2015).

6.

Zengerle, M., Chan, Ok.-H. & Ciulli, A. Selective small molecule induced degradation of the BET bromodomain protein BRD4. ACS Chem. Biol. 10, 1770–1777 (2015).

7.

Gadd, M. S. et al. Structural foundation of PROTAC cooperative recognition for selective protein degradation. Nat.Chem. Biol. 13, 514–521 (2017).

eight.

Nowak, R. P. et al. Plasticity in binding confers selectivity in ligand-induced protein degradation. Nat. Chem. Biol. 14, 706–714 (2018).

9.

Bondeson, D. P. et al. Classes in PROTAC design from selective degradation with a promiscuous warhead. Cell Chem. Biol. 25, 78–87. e75 (2018).

10.

Gechijian, L. N. et al. Useful TRIM24 degrader through conjugation of ineffectual bromodomain and VHL ligands. Nat. Chem. Biol. 14, 405–412 (2018).

11.

Bassi, Z. I. et al. Modulating PCAF/GCN5 immune cell perform via a PROTAC method. ACS Chem. Biol. 13, 2862–2867 (2018).

12.

Kadoch, C. & Crabtree, G. R. Mammalian SWI/SNF chromatin transforming complexes and most cancers: mechanistic insights gained from human genomics. Sci. Adv. 1, e1500447 (2015).

13.

St Pierre, R. & Kadoch, C. Mammalian SWI/SNF complexes in most cancers: rising therapeutic alternatives. Curr. Opin. Genet. Dev. 42, 56–67 (2017).

14.

Kadoch, C. et al. Proteomic and bioinformatic evaluation of mammalian SWI/SNF complexes identifies intensive roles in human malignancy. Nat. Genet. 45, 592–601 (2013).

15.

Hodges, C., Kirkland, J. G. & Crabtree, G. R. The numerous roles of BAF (mSWI/SNF) and PBAF complexes in most cancers. Chilly Spring Harb. Perspect. Med. 6, a026930 (2016).

16.

Shain, A. H. & Pollack, J. R. The spectrum of SWI/SNF mutations, ubiquitous in human cancers. PLoS One eight, e55119 (2013).

17.

Shi, J. et al. Function of SWI/SNF in acute leukemia upkeep and enhancer-mediated Myc regulation. Genes Dev. 27, 2648–2662 (2013).

18.

Hoffman, G. R. et al. Useful epigenetics method identifies BRM/SMARCA2 as a crucial artificial deadly goal in BRG1-deficient cancers. Proc. Natl Acad. Sci. USA 111, 3128–3133 (2014).

19.

Oike, T. et al. An artificial lethality-based technique to deal with cancers harboring a genetic deficiency within the chromatin transforming issue BRG1. Most cancers Res. 73, 5508–5518 (2013).

20.

Wilson, B. G. et al. Residual complexes containing SMARCA2 (BRM) underlie the oncogenic drive of SMARCA4 (BRG1) mutation. Mol. Cell. Biol. 34, 1136–1144 (2014).

21.

Papillon, J. P. N. et al. Discovery of orally energetic inhibitors of brahma homolog (BRM)/SMARCA2 ATPase exercise for the therapy of brahma associated gene 1 (BRG1)/SMARCA4-mutant cancers. J. Med. Chem. 61, 10155–10172 (2018).

22.

Sutherell, C. L. et al. Identification and improvement of two,Three-dihydropyrrolo[1,2-a]quinazolin-5(1H)-one inhibitors focusing on bromodomains throughout the swap/sucrose nonfermenting advanced. J. Med. Chem. 59, 5095–5101 (2016).

23.

Gerstenberger, B. S. et al. Identification of a chemical probe for household VIII bromodomains via optimization of a fraction hit. J. Med. Chem. 59, 4800–4811 (2016).

24.

Vangamudi, B. et al. The SMARCA2/Four ATPase area surpasses the bromodomain as a drug goal in SWI/SNF-mutant cancers: insights from cDNA rescue and PFI-Three inhibitor research. Most cancers Res. 75, 3865–3878 (2015).

25.

Remillard, D. et al. Degradation of the BAF advanced issue BRD9 by heterobifunctional ligands. Angew. Chemie Int. 56, 5738–5743 (2017).

26.

Zoppi, V. et al. Iterative design and optimization of initially inactive proteolysis focusing on chimeras (PROTACs) determine VZ185 as a potent, quick, and selective von hippel–lindau (VHL) primarily based twin degrader probe of BRD9 and BRD7. J. Med. Chem. 62, 699–726 (2019).

27.

Qin, C. et al. Discovery of QCA570 as an exceptionally potent and efficacious proteolysis focusing on chimera (PROTAC) degrader of the bromodomain and extra-terminal (BET) proteins able to inducing full and sturdy tumor regression. J. Med. Chem. 61, 6685–6704 (2018).

28.

Albrecht, B. Ok. et al. Therapeutic pyridazine compounds and makes use of thereof. WIPO patent WO2016138114 (2016).

29.

Myrianthopoulos, V. et al. Discovery and optimization of a selective ligand for the swap/sucrose nonfermenting-related bromodomains of polybromo protein-1 by means of digital screening and hydration evaluation. J. Med. Chem. 59, 8787–8803 (2016).

30.

Soares, P. et al. Group-based optimization of potent and cell-active inhibitors of the von Hippel-Lindau (VHL) E3 ubiquitin ligase: structure-activity relationships resulting in the chemical probe (2S,4R)-1-((S)-2-(1-cyanocyclopropanecarboxamido)-Three,Three-dimethylbutanoyl)-Four-hydroxy-N-(Four-(Four-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide (VH298). J. Med. Chem. 61, 599–618 (2018).

31.

Buckley, D. L. et al. HaloPROTACS: use of small molecule PROTACS to induce degradation of halotag fusion proteins. ACS Chem. Biol. 10, 1831–1837 (2015).

32.

Maniaci, C. et al. Homo-PROTACs: bivalent small-molecule dimerizers of the VHL E3 ubiquitin ligase to induce self-degradation. Nat. Commun. eight, 830 (2017).

33.

Chan, Ok.-H., Zengerle, M., Testa, A. & Ciulli, A. Affect of goal warhead and linkage vector on inducing protein degradation: comparability of bromodomain and extra-terminal (BET) degraders derived from triazolodiazepine (JQ1) and tetrahydroquinoline (I-BET726) BET inhibitor scaffolds. J. Med. Chem. 61, 504–513 (2018).

34.

Van Molle, I. et al. Dissecting fragment-based lead discovery on the von Hippel–Lindau protein:Hypoxia inducible issue 1α protein–protein interface. Chem. Biol. 19, 1300–1312 (2012).

35.

Soucy, T. A. et al. An inhibitor of NEDD8-activating enzyme as a brand new method to deal with most cancers. Nature 458, 732 (2009).

36.

Zorba, A. et al. Delineating the position of cooperativity within the design of potent PROTACs for BTK. Proc. Natl Acad. Sci. USA 115, E7285–E7292 (2018).

37.

Zhao, Ok. et al. Fast and phosphoinositol-dependent binding of the SWI/SNF-like BAF advanced to chromatin after T lymphocyte receptor signaling. Cell 95, 625–636 (1998).

38.

Qiu, Z. & Ghosh, A. A calcium-dependent swap in a CREST-BRG1 advanced regulates activity-dependent gene expression. Neuron 60, 775–787 (2008).

39.

McDonald, E. R. et al. Undertaking DRIVE: a compendium of most cancers dependencies and artificial deadly relationships uncovered by large-scale, deep RNAi screening. Cell 170, 577–592.e510 (2017).

40.

Tsherniak, A. et al. Defining a most cancers dependency map. Cell 170, 564–576.e516 (2017).

41.

Reyes, J. C. et al. Altered management of mobile proliferation within the absence of mammalian brahma (SNF2α). EMBO J.
17, 6979–6991 (1998).

42.

Bultman, S. et al. A Brg1 null mutation within the mouse reveals purposeful variations amongst mammalian SWI/SNF complexes. Mol. Cell 6, 1287–1295 (2000).

43.

Fedorov, O. et al. Selective focusing on of the BRG/PB1 bromodomains impairs embryonic and trophoblast stem cell upkeep. Science Adv. 1, e1500723 (2015).

44.

Filippakopoulos, P. et al. Histone recognition and large-scale structural evaluation of the human bromodomain household. Cell 149, 214–231 (2012).

45.

Vonrhein, C. et al. Knowledge processing and evaluation with the auto PROC toolbox. Acta Crystallog. D Biol. Crystallogr. 67, 293–302 (2011).

46.

Collaborative Computational Undertaking, N. The CCP4 suite: applications for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

47.

Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, Ok. Options and improvement of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

48.

Chen, V. B. et al. MolProbity: all-atom construction validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr 66, 12–21 (2009).

49.

Bruno, I. J. et al. Retrieval of crystallographically-derived molecular geometry data. J. Chem. Inf. Comput. Sci. 44, 2133–2144 (2004).

50.

Kabsch, W. Xds. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

51.

McCoy, A. J. et al. Phaser crystallographic software program. J. Appl. Crystallogr. 40, 658–674 (2007).

52.

Fellmann, C. et al. An optimized microRNA spine for efficient single-copy RNAi. Cell Rep. 5, 1704–1713 (2013).

53.

Hughes, C. S. et al. Ultrasensitive proteome evaluation utilizing paramagnetic bead expertise. Mol. Syst. Biol. 10, 757–757 (2014).

54.

Cox, J. & Mann, M. MaxQuant permits excessive peptide identification charges, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

55.

Cox, J. R. et al. Andromeda: a peptide search engine built-in into the MaxQuant atmosphere. J. Proteome Res. 10, 1794–1805 (2011).


Supply hyperlink
asubhan

wordpress autoblog

amazon autoblog

affiliate autoblog

wordpress web site

web site improvement

Show More

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Close