Chemistry

Bidirectional modulation of HIF-2 exercise via chemical ligands


1.

Wu, D. & Rastinejad, F. Structural characterization of mammalian bHLH-PAS transcription elements. Curr. Opin. Struct. Biol. 43, 1–9 (2017).

2.

Möglich, A., Ayers, R. A. & Moffat, Ok. Construction and signaling mechanism of Per-ARNT-Sim domains. Construction 17, 1282–1294 (2009).

Three.

Wu, D., Su, X., Potluri, N., Kim, Y. & Rastinejad, F. NPAS1-ARNT and NPAS3-ARNT crystal buildings implicate the bHLH-PAS household as multi-ligand binding transcription elements. eLife 5, e18790 (2016).

Four.

McIntosh, B. E., Hogenesch, J. B. & Bradfield, C. A. Mammalian Per-Arnt-Sim proteins in environmental adaptation. Annu. Rev. Physiol. 72, 625–645 (2010).

5.

Schito, L. & Semenza, G. L. Hypoxia-inducible elements: grasp regulators of most cancers development. Developments Most cancers 2, 758–770 (2016).

6.

Keith, B., Johnson, R. S. & Simon, M. C. HIF1α and HIF2α: sibling rivalry in hypoxic tumour progress and development. Nat. Rev. Most cancers 12, 9–22 (2011).

7.

Ravenna, L., Salvatori, L. & Russo, M. A. HIF3α: the little we all know. FEBS. J. 283, 993–1003 (2016).

eight.

Wu, D., Potluri, N., Lu, J., Kim, Y. & Rastinejad, F. Structural integration in hypoxia-inducible elements. Nature 524, 303–308 (2015).

9.

Ivan, M. et al. HIFalpha focused for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292, 464–468 (2001).

10.

Jaakkola, P. et al. Concentrating on of HIF-alpha to the von Hippel-Lindau ubiquitylation complicated by O2-regulated prolyl hydroxylation. Science 292, 468–472 (2001).

11.

Yu, F., WhiteS. B., Zhao, Q. & Lee, F. S. HIF-1α binding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proc. Natl Acad. Sci. USA 98, 9630–9635 (2001).

12.

Lando, D., Peet, D. J., Whelan, D. A., Gorman, J. J. & Whitelaw, M. L. Asparagine hydroxylation of the HIF transactivation area a hypoxic swap. Science 295, 858–861 (2002).

13.

Lando, D. et al. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional exercise of hypoxia-inducible issue. Genes Dev. 16, 1466–1471 (2002).

14.

Huang, P., Chandra, V. & Rastinejad, F. Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Annu. Rev. Physiol. 72, 247–272 (2010).

15.

Denison, M. S. & Nagy, S. R. Activation of the aryl hydrocarbon receptor by structurally numerous exogenous and endogenous chemical compounds. Annu. Rev. Pharmacol. Toxicol. 43, 309–334 (2003).

16.

Denison, M. S., Soshilov, A. A., He, G., DeGroot, D. E. & Zhao, B. Precisely the identical however completely different: promiscuity and variety within the molecular mechanisms of motion of the aryl hydrocarbon (dioxin) receptor. Toxicol. Sci. 124, 1–22 (2011).

17.

Scheuermann, T. H. et al. Synthetic ligand binding throughout the HIF2α PAS-B area of the HIF2 transcription issue. Proc. Natl Acad. Sci. USA 106, 450–455 (2009).

18.

Key, J., Scheuermann, T. H., Anderson, P. C., Daggett, V. & Gardner, Ok. H. Rules of ligand binding inside a totally buried cavity in HIF2αa PAS-B. J. Am. Chem. Soc. 131, 17647–17654 (2009).

19.

Cardoso, R. et al. Identification of Cys255 in HIF-1α as a novel web site for growth of covalent inhibitors of HIF-1α/ARNT PasB area protein-protein interplay. Protein Sci. 21, 1885–1896 (2012).

20.

Guo, Y. et al. Regulating the ARNT/TACC3 axis: a number of approaches to manipulating protein/protein interactions with small molecules. ACS. Chem. Biol. eight, 626–635 (2013).

21.

Fala, A. M. et al. Unsaturated fatty acids as high-affinity ligands of the C-terminal Per-ARNT-Sim area from the hypoxia-inducible issue 3α. Sci. Rep. 5, 12698 (2015).

22.

Hewitson, Ok. S. & Schofield, C. J. The HIF pathway as a therapeutic goal. Drug Discov. As we speak 9, 704–711 (2004).

23.

Wallace, E. M. et al. A small-molecule antagonist of HIF2α is efficacious in preclinical fashions of renal cell carcinoma. Most cancers Res. 76, 5491–5500 (2016).

24.

Chen, W. et al. Concentrating on renal cell carcinoma with a HIF-2 antagonist. Nature 539, 112–117 (2016).

25.

Cho, H. et al. On-target efficacy of a HIF-2α antagonist in preclinical kidney most cancers fashions. Nature 539, 107–111 (2016).

26.

Maxwell, P. H. & Eckardt, Ok. U. HIF prolyl hydroxylase inhibitors for the remedy of renal anaemia and past. Nat. Rev. Nephrol. 12, 157–168 (2016).

27.

Yousaf, F. & Spinowitz, B. Hypoxia-inducible issue stabilizers: a brand new avenue for lowering BP whereas serving to hemoglobin? Curr. Hypertens. Rep. 18, 23 (2016).

28.

Gupta, N. & Want, J. B. Hypoxia-inducible issue prolyl hydroxylase inhibitors: a possible new remedy for anemia in sufferers With CKD. Am. J. Kidney. Dis. 69, 815–826 (2017).

29.

Yeh, T. L. et al. Molecular and mobile mechanisms of HIF prolyl hydroxylase inhibitors in scientific trials. Chem. Sci. eight, 7651–7668 (2017).

30.

Seidel, S. A. et al. Microscale thermophoresis quantifies biomolecular interactions beneath beforehand difficult situations. Strategies 59, 301–315 (2013).

31.

Ciulli, A. & Abell, C. Fragment-based approaches to enzyme inhibition. Curr. Opin. Biotechnol. 18, 489–496 (2007).

32.

Scheuermann, T. H. et al. Allosteric inhibition of hypoxia inducible factor-2 with small molecules. Nat. Chem. Biol. 9, 271–276 (2013).

33.

Forbes, S. A. et al. COSMIC: exploring the world’s information of somatic mutations in human most cancers. Nucleic Acids Res. 43, D805–D811 (2015).

34.

Annis, D. A., Nickbarg, E., Yang, X., Ziebell, M. R. & Whitehurst, C. E. Affinity selection-mass spectrometry screening strategies for small molecule drug discovery. Curr. Opin. Chem. Biol. 11, 518–526 (2007).

35.

Bonomini, M., Del Vecchio, L., Sirolli, V. & Locatelli, F. New remedy approaches for the anemia of CKD. Am. J. Kidney. Dis. 67, 133–142 (2016).

36.

Besarab, A. et al. Roxadustat (FG-4592): correction of anemia in incident dialysis sufferers. J. Am. Soc. Nephrol. 27, 1225–1233 (2016).

37.

Brigandi, R. A. et al. A novel hypoxia-inducible factor-prolyl hydroxylase inhibitor (GSK1278863) for anemia in CKD: a 28-day, section 2A randomized trial. Am. J. Kidney. Dis. 67, 861–871 (2016).

38.

Pergola, P. E., Spinowitz, B. S., Hartman, C. S., Maroni, B. J. & Haase, V. H. Vadadustat, a novel oral HIF stabilizer, gives efficient anemia remedy in nondialysis-dependent persistent kidney illness. Kidney Int. 90, 1115–1122 (2016).

39.

Beck, H. et al. Discovery of molidustat (BAY 85-3934): a small-molecule oral HIF-prolyl hydroxylase (HIF-PH) inhibitor for the remedy of renal anemia. ChemMedChem 13, 988–1003 (2018).

40.

Rogers, J. L. et al. Growth of inhibitors of the PAS-B area of the HIF-2α transcription issue. J. Med. Chem. 56, 1739–1747 (2013).

41.

Scheuermann, T. H. et al. Isoform-selective and stereoselective inhibition of hypoxia inducible factor-2. J. Med. Chem. 58, 5930–5941 (2015).

42.

Wehn, P. M. et al. Design and exercise of particular hypoxia-inducible factor-2α (HIF-2α) inhibitors for the remedy of clear cell renal cell carcinoma: discovery of scientific candidate (S)-Three-((2,2-difluoro-1-hydroxy-7-(methylsulfonyl)-2,Three-dihydro-1H-inden-Four-yl)oxy)-5-fluorobenzonitrile (PT2385). J. Med. Chem. 61, 9691–9721 (2018).

43.

Minor, W., Cymborowski, M., Otwinowski, Z. & Chruszcz, M. HKL-3000: the mixing of information discount and construction solution–from diffraction pictures to an preliminary mannequin in minutes. Acta Crystallogr. D. Biol. Crystallogr. 62, 859–866 (2006).

44.

McCoy, A. J. et al. Phaser crystallographic software program. J. Appl. Crystallogr. 40, 658–674 (2007).

45.

Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, Ok. Options and growth of Coot. Acta Crystallogr. D. Biol. Crystallogr. 66, 486–501 (2010).

46.

Adams, P. D. et al. PHENIX: a complete Python-based system for macromolecular construction resolution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

47.

Chen, V. B. et al. MolProbity: all-atom construction validation for macromolecular crystallography. Acta Crystallogr. D. Biol. Crystallogr. 66, 12–21 (2010).

48.

Marsh, J. J. et al. Structural insights into fibrinogen dynamics utilizing amide hydrogen/deuterium alternate mass spectrometry. Biochemistry 52, 5491–5502 (2013).

49.

Woods, V. L. Jr. & Hamuro, Y. Excessive decision, high-throughput amide deuterium exchange-mass spectrometry (DXMS) dedication of protein binding web site construction and dynamics: utility in pharmaceutical design. J. Cell. Biochem. Suppl. 84, 89–98 (2001).

50.

Walters, B. T., Ricciuti, A., Mayne, L. & Englander, S. W. Minimizing again alternate within the hydrogen exchange-mass spectrometry experiment. J. Am. Soc. Mass. Spectrom. 23, 2132–2139 (2012).

51.

Li, S. et al. Mechanism of intracellular cAMP sensor Epac2 activation: cAMP-induced conformational adjustments recognized by amide hydrogen/deuterium alternate mass spectrometry (DXMS). J. Biol. Chem. 286, 17889–17897 (2011).


Supply hyperlink
asubhan

wordpress autoblog

amazon autoblog

affiliate autoblog

wordpress web site

web site growth

Show More

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Close