Buoyant hydrous mantle plume from the mantle transition zone


Loper, D. E. & Stacey, F. D. The dynamical and thermal construction of deep mantle plumes. Phys. Earth Planet. Inter. 33, 304–317 (1983).


Campbell, I. H. Giant igneous provinces and the mantle plume speculation. Components 1, 265–269 (2005).


Putirka, Okay. D., Perfit, M., Ryerson, F. J. & Jackson, M. G. Ambient and extra mantle temperatures, olivine thermometry, and lively vs. passive upwelling. Chem. Geol. 241, 177–206 (2007).


Sobolev, A. V. et al. The quantity of recycled crust in sources of mantle-derived melts. Science 316, 412–417 (2007).


Herzberg, C. & Gazel, E. Petrological proof for secular cooling in mantle plumes. Nature 458, 619–622 (2009).


Lee, C.-T., Luffi, P., Plank, T., Dalton, H. & Leeman, W. P. Constraints on the depths and temperatures of basaltic magma technology on Earth and different terrestrial planets utilizing new thermobarometers for mafic magmas. Earth Planet. Sci. Lett. 279, 20–33 (2009).


Zhao, D., Tian, Y., Lei, J., Liu, L. & Zheng, S. Seismic picture and origin of the Changbai intraplate volcano in East Asia: position of massive mantle wedge above the stagnant Pacific slab. Phys. Earth Planet. Inter. 173, 197–206 (2009).


Wang, X.-C., Wilde, S. A., Li, Q.-L. & Yang, Y.-N. Continental flood basalts derived from the hydrous mantle transition zone. Nature Commun. 6, 7700, (2015).


Ivanov, A. V. & Litasov, Okay. D. The deep water cycle and flood basalt volcanism. Int. Geol. Rev. 56, 1–14 (2014).


Bond, D. P. G. & Grasby, S. E. On the causes of mass extinctions. Palaeogeogr, Palaeoclimatol, Palaeoecol. 478, Three–29 (2017).


Richard, G. C. & Iwamori, H. Stagnant slab, moist plumes and Cenozoic volcanism in East Asia. Phys. Earth Planet. Inter. 183, 280–287 (2010).


Faccenda, M. Water within the slab: a trilogy. Tectonophys. 614, 1–30 (2014).


Wei, H. et al. Timescale and evolution of the intracontinental Tianchi volcanic defend and ignimbrite-forming eruption, Changbaishan, Northeast China. Lithos 96, 315–324 (2007).


Liu, J.-Q. et al. Geological background and geodynamic mechanism of Mt. Changbai volcanoes on the China–Korea border. Lithos 236–237, 46–73 (2015).


Fukao, Y., Obayashi, M., Inoue, H. & Nenbai, M. Subducting slabs stagnant within the mantle transition zone. J. Geophys. Res. 97, 4809–4822 (1992).


Kelbert, A., Schultz, A. & Egbert, G. World electromagnetic induction constraints on transition-zone water content material variations. Nature 460, 1003–1006 (2009).


Karato, S.-I. Water distribution throughout the mantle transition zone and its implications for world materials circulation. Earth Planet. Sci. Lett. 301, 413–423 (2011).


Kuritani, T., Ohtani, E. & Kimura, J.-I. Intensive hydration of the mantle transition zone beneath China brought on by historic slab stagnation. Nature Geosci. four, 713–716 (2011).


Choi, H.-O. et al. Geochemistry of olivine-hosted soften inclusions within the Baekdusan (Changbaishan) basalts: implications for recycling of oceanic crustal supplies into the mantle supply. Lithos 284–285,, 194–206 (2017).


Kimura, J.-I. & Kawabata, H. Ocean Basalt Simulator model 1 (OBS1): hint component mass stability in adiabatic melting of a pyroxenite-bearing peridotite. Geochem. Geophys. Geosyst. 16, 267–300 (2015).


Putirka, Okay. Charges and kinds of planetary cooling on Earth, Moon, Mars, and Vesta, utilizing new fashions for oxygen fugacity, ferric-ferrous ratios, olivine-liquid Fe-Mg trade, and mantle potential temperature. Am. Mineral. 101, 819–840 (2016).


Kimura, J.-I. et al. Plume–stagnant slab–lithosphere interactions: origin of the late Cenozoic intra-plate basalts on the East Eurasia margin. Lithos 300–301, 227–249 (2018).


Nishimoto, J., Nakagawa, M., Miyamoto, T. & Taniguchi, H. Magma system of 10th century eruption of Baitoushan volcano: inferred from petrological and geochemical traits. Heart for Northeast Asian Research Monograph Collection 41, 71–94 (2009).


Waters, L. E. & Lange, R. A. An up to date calibration of the plagioclase-liquid hygrometer-thermometer relevant to basalts by way of rhyolites. Am. Mineral. 100, 2172–2184 (2015).


Shimizu, Okay. et al. H2O, CO2, F, S, Cl, and P2O5 analyses of silicate glasses utilizing SIMS: report of unstable normal glasses. Geochem. J. 51, 299–313 (2017).


Park, Okay., Choi, S. H., Cho, M. & Lee, D.-C. Evolution of the lithospheric mantle beneath Mt. Baekdu (Changbaishan): constraints from geochemical and Sr–Nd–Hf isotopic research on peridotite xenoliths in trachybasalt. Lithos 286–287, 330–344 (2017).


Tatsumi, Y., Sakuyama, M., Fukuyama, H. & Kushiro, I. Technology of arc basalt magmas and thermal construction of the mantle wedge in subduction zones. J. Geophys. Res. 88, 5815–5825 (1983).


Horn, S. & Schmincke, H.-U. Risky emission throughout the eruption of Baitoushan Volcano (China/North Korea) ca. 969 AD. Bull. Volcanol. 61, 537–555 (2000).


Salters, V. J. M. & Stracke, A. Composition of the depleted mantle. Geochem. Geophys. Geosyst. 5, (2004).


Ghiorso, M. S., Hirschmann, M. M., Reiners, P. W. & Kress, V. C. The pMELTS: a revision of MELTS for improved calculation of section relations and main component partitioning associated to partial melting of the mantle to three GPa. Geochem. Geophys. Geosyst. Three, (2002).


Smith, P. M. & Asimow, P. D. Adiabat_1ph: a brand new public front-end to the MELTS, pMELTS, and pHMELTS fashions. Geochem. Geophys. Geosyst. 6, (2005).


Médard, E. & Grove, T. L. The impact of H2O on the olivine liquidus of basaltic melts: experiments and thermodynamic fashions. Contrib. Mineral. Petrol. 155, 417–432 (2008).


Tang, Y. et al. Changbaishan volcanism in northeast China linked to subduction-induced mantle upwelling. Nature Geosci. 7, 470–475 (2014).


Zhang, Y., Wang, C., Jin, Z. & Zhu, L. Partial melting of stagnant oceanic lithosphere within the mantle transition zone and its geophysical implications. Lithos 292–293, 379–387 (2017).


Safonova, I., Maruyama, S. & Litasov, Okay. Technology of hydrous-carbonated plumes within the mantle transition zone linked to tectonic erosion and subduction. Tectonophysics. 662, 454–471 (2015).


Aoki, I. & Takahashi, E. Density of MORB eclogite within the higher mantle. Physics Earth. Planet. Int. 143–144, 129–143 (2004).


Kawai, Okay., Yamamoto, S., Tsuchiya, T. & Maruyama, S. The second continent: existence of granitic continental supplies across the backside of the mantle transition zone. Geosci. Entrance. four, 1–6 (2013).


Ohtani, E. & Zhao, D. The position of water within the deep higher mantle and transition zone: dehydration of stagnant slabs and its results on the large mantle wedge. Russ. Geol. Geophys. 50, 1073–1078 (2009).


Zhao, D. & Tian, Y. Changbai intraplate volcanism and deep earthquakes in East Asia: a attainable hyperlink? Geophys. J. Int. 195, 706–724 (2013).


Tenner, T. J., Hirschmann, M. M., Withers, A. C. & Ardia, P. H2O storage capability of olivine and low-Ca pyroxene from 10 to 13 GPa: penalties for dehydration melting above the transition zone. Contrib. Mineral. Petrol. 163, 297–316 (2012).


Tune, Y., Frey, F. A. & Zhi, X. Isotopic traits of Hannuoba basalts, jap China: implications for his or her petrogenesis and the composition of subcontinental mantle. Chem. Geol. 88, 35–52 (1990).


Putirka, Okay. D. Mantle potential temperatures at Hawaii, Iceland, and the mid-ocean ridge system, as inferred from olivine phenocrysts: proof for thermally pushed mantle plumes. Geochem. Geophys. Geosyst. 6, (2005).


Kuritani, T. et al. Intraplate magmatism associated to deceleration of upwelling asthenospheric mantle: implications from the Changbaishan defend basalts, northeast China. Lithos 112, 247–258 (2009).


Chen, C. et al. Mantle transition zone, stagnant slab and intraplate volcanism in Northeast Asia. Geophys. J. Int. 209, 68–85 (2017).


Liu, J., Xia, Q.-Okay., Kuritani, T., Hanski, E. & Yu, H.-R. Mantle hydration and the position of water within the technology of huge igneous provinces. Nature Commun. eight, 1824, (2017).


Komabayashi, T., Omori, S. & Maruyama, S. Petrogenetic grid within the system MgO–SiO2–H2O as much as 30 GPa, 1600 °C: functions to hydrous peridotite subducting into the Earths deep inside. J. Geophys. Res. 109, B03206 (2004).


Withers, A. C. & Hirschmann, M. M. Affect of temperature, composition, silica exercise and oxygen fugacity on the H2O storage capability of olivine at eight GPa. Contrib. Mineral. Petrol. 156, 595–605 (2008).


Herzberg, C., Condie, Okay. & Korenaga, J. Thermal historical past of the Earth and its petrological expression. Earth Planet. Sci. Lett. 292, 79–88 (2010).


Kuritani, T., Sakuyama, T., Kamada, N., Yokoyama, T. & Nakagawa, M. Fluid-fluxed melting of mantle versus decompression melting of hydrous mantle plume as the reason for intraplate magmatism over a stagnant slab: implications from Fukue Volcano Group, SW Japan. Lithos 282–283, 98–110 (2017).


Liu, J., Han, J. & Fyfe, W. S. Cenozoic episodic volcanism and continental rifting in northeast China and attainable hyperlink to Japan Sea improvement as revealed from Okay–Ar geochronology. Tectonophys. 339, 385–401 (2001).


Liu, X. & Zhao, D. Backarc spreading and mantle wedge stream beneath the Japan Sea: perception from Rayleigh-wave anisotropic tomography. Geophys. J. Int. 207, 357–373 (2016).


Zhao, D., Yu, S. & Ohtani, E. East Asia: seismotectonics, magmatism and mantle dynamics. J. Asian Earth Sci. 40, 689–709 (2011).


Tian, Y. et al. Mantle transition zone construction beneath the Changbai volcano: perception into deep slab dehydration and sizzling upwelling close to the 410 km discontinuity. J. Geophys. Res. Stable Earth 121, 5794–5808 (2016).

Supply hyperlink

wordpress autoblog

amazon autoblog

affiliate autoblog

wordpress web site

web site improvement

Show More

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *