Chemistry

Carbon-dot-supported atomically dispersed gold as a mitochondrial oxidative stress amplifier for most cancers therapy


1.

Weinberg, S. E. & Chandel, N. S. Focusing on mitochondria metabolism for most cancers remedy. Nat. Chem. Biol. 11, 9–15 (2015).

2.

Sena, L. A. & Chandel, N. S. Physiological roles of mitochondrial reactive oxygen species. Mol. Cell 48, 158–167 (2012).

Three.

Shadel, G. S. & Horvath, T. L. Mitochondrial ROS signaling in organismal homeostasis. Cell 163, 560–569 (2015).

Four.

Willems, P. H., Rossignol, R., Dieteren, C. E., Murphy, M. P. & Koopman, W. J. Redox homeostasis and mitochondrial dynamics. Cell. Metab. 22, 207–218 (2015).

5.

Sabharwal, S. S. & Schumacker, P. T. Mitochondrial ROS in most cancers: initiators, amplifiers or an Achilles’ heel? Nat. Rev. Most cancers 14, 709–721 (2014).

6.

Dickinson, B. C. & Chang, C. J. Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat. Chem. Biol. 7, 504–511 (2011).

7.

Wallace, D. C. Mitochondria and most cancers. Nat. Rev. Most cancers 12, 685–698 (2012).

eight.

Baulies, A. et al. The two-oxoglutarate service promotes liver most cancers by sustaining mitochondrial GSH regardless of ldl cholesterol loading. Redox Biol. 14, 164–177 (2018).

9.

Gorrini, C., Harris, I. S. & Mak, T. W. Modulation of oxidative stress as an anticancer technique. Nat. Rev. Drug Discov. 12, 931–947 (2013).

10.

Chen, G., Chen, Z., Hu, Y. & Huang, P. Inhibition of mitochondrial respiration and speedy depletion of mitochondrial glutathione by β-phenethyl isothiocyanate: mechanisms for anti-leukemia exercise. Antioxid. Redox Signal. 15, 2911–2921 (2011).

11.

Trachootham, D., Alexandre, J. & Huang, P. Focusing on most cancers cells by ROS-mediated mechanisms: a radical therapeutic strategy? Nat. Rev. Drug Discov. eight, 579–591 (2009).

12.

Liu, L. et al. Technology of subnanometric platinum with excessive stability throughout transformation of a 2D zeolite into 3D. Nat. Mater. 16, 132–138 (2017).

13.

Yao, S. et al. Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift response. Science 357, 389–393 (2017).

14.

Liu, P. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352, 797–800 (2016).

15.

Zhang, Z. et al. Thermally steady single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation. Nat. Commun. eight, 16100 (2017).

16.

Yang, X.-F. et al. Single-atom catalysts: a brand new frontier in heterogeneous catalysis. Acc. Chem. Res. 46, 1740–1748 (2013).

17.

Ma, X., Gong, N., Zhong, L., Solar, J. & Liang, X.-J. Way forward for nanotherapeutics: focusing on the mobile sub-organelles. Biomaterials 97, 10–21 (2016).

18.

Zhang, C. J. et al. Mechanism-guided design and synthesis of a mitochondria-targeting artemisinin analogue with enhanced anticancer exercise. Angew. Chem. Int. Ed. 128, 13974–13978 (2016).

19.

Ka, H. et al. Cinnamaldehyde induces apoptosis by ROS-mediated mitochondrial permeability transition in human promyelocytic leukemia HL-60 cells. Most cancers Lett. 196, 143–152 (2003).

20.

Grönbeck, H., Curioni, A. & Andreoni, W. Thiols and disulfides on the Au(111) floor: the headgroup–gold interplay. J. Am. Chem. Soc. 122, 3839–3842 (2000).

21.

Chen, F., Li, X., Hihath, J., Huang, Z. & Tao, N. Impact of anchoring teams on single-molecule conductance: comparative examine of thiol-, amine-, and carboxylic-acid-terminated molecules. J. Am. Chem. Soc. 128, 15874–15881 (2006).

22.

Miller, J. et al. The impact of gold particle dimension on Au–Au bond size and reactivity towards oxygen in supported catalysts. J. Catal. 240, 222–234 (2006).

23.

Liu, J. Catalysis by supported single metallic atoms. ACS Catal. 7, 34–59 (2016).

24.

Frenkel, A. I., Hills, C. W. & Nuzzo, R. G. A view from the within: complexity within the atomic scale ordering of supported metallic nanoparticles. J. Phys. Chem. B 105, 12689–12703 (2001).

25.

Oberli, L., Monot, R., Mathieu, H., Landolt, D. & Buttet, J. Auger and X-ray photoelectron spectroscopy of small Au particles. Surf. Sci. 106, 301–307 (1981).

26.

Wang, X. et al. Glutathione-triggered ‘off–on’ launch of anticancer medicine from dendrimer-encapsulated gold nanoparticles. J. Am. Chem. Soc. 135, 9805–9810 (2013).

27.

Hu, Q., Gao, M., Feng, G. & Liu, B. Mitochondria-targeted most cancers remedy utilizing a light-up probe with aggregation-induced-emission traits. Angew. Chem. Int. Ed. 53, 14225–14229 (2014).

28.

Han, D. C. et al. 2′-Benzoyloxycinnamaldehyde induces apoptosis in human carcinoma by way of reactive oxygen species. J. Biol. Chem. 279, 6911–6920 (2004).

29.

Kim, B. et al. Twin acid-responsive micelle-forming anticancer polymers as new anticancer therapeutics. Adv. Funct. Mater. 23, 5091–5097 (2013).

30.

Deng, C., Jiang, Y., Cheng, R., Meng, F. & Zhong, Z. Biodegradable polymeric micelles for focused and managed anticancer drug supply: guarantees, progress and prospects. Nano Immediately 7, 467–480 (2012).

31.

Shan, X., Jones, D. P., Hashmi, M. & Anders, M. Selective depletion of mitochondrial glutathione concentrations by (R,S)-Three-hydroxy-Four-pentenoate potentiates oxidative cell demise. Chem. Res. Toxicol. 6, 75–81 (1993).

32.

Marí, M. et al. Mechanism of mitochondrial glutathione-dependent hepatocellular susceptibility to TNF regardless of NF-κB activation. Gastroenterology 134, 1507–1520 (2008).

33.

Esterbauer, H., Schaur, R. J. & Zollner, H. Chemistry and biochemistry of Four-hydroxynonenal, malonaldehyde and associated aldehydes. Free Radic. Biol. Med. 11, 81–128 (1991).

34.

Hinman, A., Chuang, H.-H., Bautista, D. M. & Julius, D. TRP channel activation by reversible covalent modification. Proc. Natl Acad. Sci. USA 103, 19564–19568 (2006).

35.

Ma, X. et al. Colloidal gold nanoparticles induce adjustments in mobile and subcellular morphology. ACS Nano 11, 7807–7820 (2017).

36.

Inexperienced, D. R. & Reed, J. C. Mitochondria and apoptosis. Science 281, 1309–1311 (1998).

37.

Higuchi, Y. Chromosomal DNA fragmentation in apoptosis and necrosis induced by oxidative stress. Biochem. Pharmacol. 66, 1527–1535 (2003).

38.

Smiley, S. T. et al. Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1. Proc. Natl Acad. Sci. USA 88, 3671–3675 (1991).

39.

Alavian, Ok. N. et al. Bcl-xL regulates metabolic effectivity of neurons by interplay with the mitochondrial F1FO ATP synthase. Nat. Cell Biol. 13, 1224–1233 (2011).

40.

Schulte, A. & Schuhmann, W. Single-cell microelectrochemistry. Angew. Chem. Int. Ed. 46, 8760–8777 (2007).

41.

Maluccio, M. & Covey, A. Current progress in understanding, diagnosing, and treating hepatocellular carcinoma. CA Most cancers J. Clin. 62, 394–399 (2012).

42.

Altekruse, S. F., Henley, S. J., Cucinelli, J. E. & McGlynn, Ok. A. Altering hepatocellular carcinoma incidence and liver most cancers mortality charges in the USA. Am. J. Gastroenterol. 109, 542–553 (2014).

43.

Gao, H. et al. Excessive-throughput screening utilizing patient-derived tumor xenografts to foretell medical trial drug response. Nat. Med. 21, 1318–1325 (2015).

44.

Lin, S., Lin, C., Lin, C., Hsu, C. & Chen, Y. Randomised managed trial evaluating percutaneous radiofrequency thermal ablation, percutaneous ethanol injection, and percutaneous acetic acid injection to deal with hepatocellular carcinoma of three cm or much less. Intestine. 54, 1151–1156 (2005).

45.

Germani, G. et al. Medical outcomes of radiofrequency ablation, percutaneous alcohol and acetic acid injection for hepatocelullar carcinoma: a meta-analysis. J. Hepatol. 52, 380–388 (2010).

46.

Livraghi, T. et al. Hepatocellular carcinoma and cirrhosis in 746 sufferers: long-term outcomes of percutaneous ethanol injection. Radiology 197, 101–108 (1995).

47.

Zheng, M. et al. Integrating oxaliplatin with extremely luminescent carbon dots: an unprecedented theranostic agent for personalised drugs. Adv. Mater. 26, 3554–3560 (2014).

48.

Crooks, R. M., Zhao, M., Solar, L., Chechik, V. & Yeung, L. Ok. Dendrimer-encapsulated metallic nanoparticles: synthesis, characterization, and functions to catalysis. Acc. Chem. Res. 34, 181–190 (2001).

49.

Yuan, L., Lin, W., Xie, Y., Chen, B. & Music, J. Improvement of a ratiometric fluorescent sensor for ratiometric imaging of endogenously produced nitric oxide in macrophage cells. Chem. Commun. 47, 9372–9374 (2011).

50.

Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: information evaluation for X-ray absorption spectroscopy utilizing IFEFFIT. J. Synchrotron. Radiat. 12, 537–541 (2005).

51.

Tan, X. et al. The affect of dissolved Si on Ni precipitate formation on the kaolinite water interface: kinetics, DRS and EXAFS evaluation. Chemosphere 173, 135–142 (2017).

52.

Worth, S. W., Rhodes, J. M., Calvillo, L. & Russell, A. E. Revealing the main points of the floor composition of electrochemically ready Au@Pd core@shell nanoparticles with in situ EXAFS. J. Phys. Chem. C 117, 24858–24865 (2013).

53.

Noh, J. et al. Amplification of oxidative stress by a twin stimuli-responsive hybrid drug enhances most cancers cell demise. Nat. Commun. 6, 6907 (2015).


Supply hyperlink
asubhan

wordpress autoblog

amazon autoblog

affiliate autoblog

wordpress web site

web site improvement

Show More

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Close