CAT tails drive degradation of stalled polypeptides on and off the ribosome


Bengtson, M. H. & Joazeiro, C. A. P. Position of a ribosome-associated E3 ubiquitin ligase in protein high quality management. Nature 467, 470–473 (2010).


Brandman, O. et al. A ribosome-bound high quality management advanced triggers degradation of nascent peptides and indicators translation stress. Cell 151, 1042–1054 (2012).


Defenouillère, Q. et al. Cdc48-associated advanced sure to 60S particles is required for the clearance of aberrant translation merchandise. Proc. Natl Acad. Sci. USA 110, 5046–5051 (2013).


Tsuboi, T. et al. Dom34:hbs1 performs a basic function in quality-control methods by dissociation of a stalled ribosome on the three′ finish of aberrant mRNA. Mol. Cell 46, 518–529 (2012).


Shao, S., von der Malsburg, Ok. & Hegde, R. S. Listerin-dependent nascent protein ubiquitination depends on ribosome subunit dissociation. Mol. Cell 50, 637–648 (2013).


Letzring, D. P., Dean, Ok. M. & Grayhack, E. J. Management of translation effectivity in yeast by codon–anticodon interactions. RNA (2010).


Ito-Harashima, S., Kuroha, Ok., Tatematsu, T. & Inada, T. Translation of the poly(A) tail performs essential roles in nonstop mRNA surveillance through translation repression and protein destabilization by proteasome in yeast. Genes Dev. 21, 519–524 (2007).


Simms, C. L., Yan, L. L. & Zaher, H. S. Ribosome collision is essential for high quality management throughout no-go decay. Mol. Cell 68, 361–373.e5 (2017).


Juszkiewicz, S. et al. ZNF598 is a top quality management sensor of collided ribosomes. Mol. Cell 72, 469–481.e7 (2018).


Ikeuchi, Ok. et al. Collided ribosomes type a novel structural interface to induce Hel2-driven high quality management pathways. EMBO J. 38, e100276 (2019).


Sundaramoorthy, E. et al. ZNF598 and RACK1 regulate mammalian ribosome-associated high quality management operate by mediating regulatory 40S ribosomal ubiquitylation. Mol. Cell 65, 751–760.e4 (2017).


Juszkiewicz, S. & Hegde, R. S. Initiation of high quality management throughout poly(A) translation requires site-specific ribosome ubiquitination. Mol. Cell 65, 743–750.e4 (2017).


Matsuo, Y. et al. Ubiquitination of stalled ribosome triggers ribosome-associated high quality management. Nat. Commun. eight, 159 (2017).


Shoemaker, C. J., Eyler, D. E. & Inexperienced, R. Dom34:Hbs1 promotes subunit dissociation and peptidyl-tRNA drop-off to provoke no-go decay. Science 330, 369–372 (2010).


Pisareva, V. P., Skabkin, M. A., Hellen, C. U. T., Pestova, T. V. & Pisarev, A. V. Dissociation by Pelota, Hbs1 and ABCE1 of mammalian vacant 80S ribosomes and stalled elongation complexes. EMBO J. 30, 1804–1817 (2011).


Lyumkis, D. et al. Structural foundation for translational surveillance by the big ribosomal subunit-associated protein high quality management advanced. Proc. Natl Acad. Sci. USA 111, 15981–15986 (2014).


Sitron, C. S., Park, J. H. & Brandman, O. Asc1, Hel2, and Slh1 couple translation arrest to nascent chain degradation. RNA 23, 798–810 (2017).


Shao, S., Brown, A., Santhanam, B. & Hegde, R. S. Construction and meeting pathway of the ribosome high quality management advanced. Mol. Cell 57, 433–444 (2015).


Shen, P. S. et al. Protein synthesis. Rqc2p and 60S ribosomal subunits mediate mRNA-independent elongation of nascent chains. Science 347, 75–78 (2015).


Osuna, B. A., Howard, C. J., Kc, S., Frost, A. & Weinberg, D. E. In vitro evaluation of RQC actions supplies insights into the mechanism and performance of CAT tailing. eLife 6, e27949 (2017).


Choe, Y.-J. et al. Failure of RQC equipment causes protein aggregation and proteotoxic stress. Nature 531, 191–195 (2016).


Yonashiro, R. et al. The Rqc2/Tae2 subunit of the ribosome-associated high quality management (RQC) advanced marks ribosome-stalled nascent polypeptide chains for aggregation. eLife 5, e11794 (2016).


Defenouillère, Q. et al. Rqc1 and Ltn1 stop CAT-tail induced protein aggregation by environment friendly recruitment of Cdc48 on stalled 60S subunits. J. Biol. Chem. 291, 12245–12253 (2016).


Chu, J. et al. A mouse ahead genetics display identifies LISTERIN as an E3 ubiquitin ligase concerned in neurodegeneration. Proc. Natl Acad. Sci. USA 106, 2097–2103 (2009).


Kostova, Ok. Ok. et al. CAT-tailing as a fail-safe mechanism for environment friendly degradation of stalled nascent polypeptides. Science 357, 414–417 (2017).


Dimitrova, L. N., Kuroha, Ok., Tatematsu, T. & Inada, T. Nascent peptide-dependent translation arrest results in Not4p-mediated protein degradation by the proteasome. J. Biol. Chem. 284, 10343–10352 (2009).


Donnelly, M. L. L. et al. Evaluation of the aphthovirus 2A/2B polyprotein ‘cleavage’ mechanism signifies not a proteolytic response, however a novel translational impact: a putative ribosomal ‘skip’. J. Gen. Virol. 82, 1013–1025 (2001).


Szymczak, A. L. & Vignali, D. A. A. Growth of 2A peptide-based methods within the design of multicistronic vectors. Skilled Opin. Biol. Ther. 5, 627–638 (2005).


Voss, N. R., Gerstein, M., Steitz, T. A. & Moore, P. B. The geometry of the ribosomal polypeptide exit tunnel. J. Mol. Biol. 360, 893–906 (2006).


Kelkar, D. A., Khushoo, A., Yang, Z. & Skach, W. R. Kinetic evaluation of ribosome-bound fluorescent proteins reveals an early, secure, cotranslational folding intermediate. J. Biol. Chem. 287, 2568–2578 (2012).


Patterson, G. H., Knobel, S. M., Sharif, W. D., Kain, S. R. & Piston, D. W. Use of the inexperienced fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys. J. 73, 2782–2790 (1997).


Pédelacq, J.-D., Cabantous, S., Tran, T., Terwilliger, T. C. & Waldo, G. S. Engineering and characterization of a superfolder inexperienced fluorescent protein. Nat. Biotechnol. 24, 79–88 (2006).


Batey, S. & Clarke, J. Obvious cooperativity within the folding of multidomain proteins will depend on the relative charges of folding of the constituent domains. Proc. Natl Acad. Sci. USA 103, 18113–18118 (2006).


Nilsson, O. B. et al. Cotranslational folding of spectrin domains through partially structured states. Nat. Struct. Mol. Biol. 24, 221–225 (2017).


Kamiyama, D. et al. Versatile protein tagging in cells with break up fluorescent protein. Nat. Commun. 7, 11046 (2016).


Crosas, B. et al. Ubiquitin chains are reworked on the proteasome by opposing ubiquitin ligase and deubiquitinating actions. Cell 127, 1401–1413 (2006).


Maurer, M. J. et al. Degradation indicators for ubiquitin-proteasome dependent cytosolic protein high quality management (CytoQC) in yeast. G3 6, 1853–1866 (2016).


Koegl, M. et al. A novel ubiquitination issue, E4, is concerned in multiubiquitin chain meeting. Cell 96, 635–644 (1999).


Aviram, S. & Kornitzer, D. The ubiquitin ligase Hul5 promotes proteasomal processivity. Mol. Cell. Biol. 30, 985–994 (2010).


Fang, N. N., Ng, A. H. M., Measday, V. & Mayor, T. Hul5 HECT ubiquitin ligase performs a serious function within the ubiquitylation and turnover of cytosolic misfolded proteins. Nat. Cell Biol. 13, 1344–1352 (2011).


Fang, N. N. & Mayor, T. Hul5 ubiquitin ligase: good riddance to dangerous proteins. Prion 6, 240–244 (2012).


Charneski, C. A. & Hurst, L. D. Positively charged residues are the most important determinants of ribosomal velocity. PLoS Biol. 11, e1001508 (2013).


Requião, R. D., de Souza, H. J. A., Rossetto, S., Domitrovic, T. & Palhano, F. L. Elevated ribosome density related to positively charged residues is clear in ribosome profiling experiments carried out within the absence of translation inhibitors. RNA Biol. 13, 561–568 (2016).


Weinberg, D. E. et al. Improved ribosome-footprint and mRNA measurements present insights into dynamics and regulation of yeast translation. Cell Rep. 14, 1787–1799 (2016).


Koren, I. et al. The eukaryotic proteome is formed by E3 ubiquitin ligases concentrating on C-terminal degrons. Cell 173, 1622–1635.e14 (2018).


Doamekpor, S. Ok. et al. Construction and performance of the yeast listerin (Ltn1) conserved N-terminal area in binding to stalled 60S ribosomal subunits. Proc. Natl Acad. Sci. USA 113, E4151–E4160 (2016).


Meaux, S. & Van Hoof, A. Yeast transcripts cleaved by an inner ribozyme present new perception into the function of the cap and poly(A) tail in translation and mRNA decay. RNA 12, 1323–1337 (2006).


Ozkan, E., Yu, H. & Deisenhofer, J. Mechanistic perception into the allosteric activation of a ubiquitin-conjugating enzyme by RING-type ubiquitin ligases. Proc. Natl Acad. Sci. USA 102, 18890–18895 (2005).


Plechanovová, A., Jaffray, E. G., Tatham, M. H., Naismith, J. H. & Hay, R. T. Construction of a RING E3 ligase and ubiquitin-loaded E2 primed for catalysis. Nature 489, 115–120 (2012).


Pruneda, J. N. et al. Construction of an E3: E2 Ub advanced reveals an allosteric mechanism shared amongst RING/U-box ligases. Mol. Cell 47, 933–942 (2012).


Deshaies, R. J. & Joazeiro, C. A. RING area E3 ubiquitin ligases. Annu. Rev. Biochem. 78, 399–434 (2009).


Cabrita, L. D., Hsu, S.-T. D., Launay, H., Dobson, C. M. & Christodoulou, J. Probing ribosome-nascent chain complexes produced in vivo by NMR spectroscopy. Proc. Natl Acad. Sci. USA 106, 22239–22244 (2009).


Eichmann, C., Preissler, S., Riek, R. & Deuerling, E. Cotranslational construction acquisition of nascent polypeptides monitored by NMR spectroscopy. Proc. Natl Acad. Sci. USA 107, 9111–9116 (2010).


Gibson, D. G. et al. Enzymatic meeting of DNA molecules as much as a number of hundred kilobases. Nat. Strategies 6, 343–345 (2009).


Wallace, E. W. J. et al. Reversible, particular, lively aggregates of endogenous proteins assemble upon heatstress. Cell 162, 1286–1298 (2015).

Supply hyperlink

wordpress autoblog

amazon autoblog

affiliate autoblog

wordpress web site

web site growth

Show More

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *