Chemistry

Chromoselective entry to Z – or E – allylated amines and heterocycles by a photocatalytic allylation response


1.

Trost, B. M. & Strege, P. E. Uneven induction in catalytic allylic alkylation. J. Am. Chem. Soc. 99, 1649–1651 (1977).

2.

Trost, B. M. New guidelines of selectivity: allylic alkylations catalyzed by palladium. Acc. Chem. Res. 13, 385–393 (1980).

Three.

Tsuji, J., Minami, I. & Shimizu, I. Palladium-catalyzed allylation of ketones and aldehydes with allylic carbonates by way of silyl enol ethers beneath impartial situations. Chem. Lett. 12, 1325–1326 (1983).

four.

Trost, B. M. & Van Vranken, D. L. Uneven transition metal-catalyzed allylic alkylations. Chem. Rev. 96, 395–422 (1996).

5.

De Meijere, A., Diederich, F. (eds) Steel-Catalyzed Cross-coupling Reactions, 2nd edn (Wiley, Weinheim, 2008).

6.

D’Ischia, A., Napolitano, A. & Pezella, A. Pyrroles and their Benzo Derivatives: Utility. in Complete Heterocyclic Chemistry III (eds Katritzky, A. R., Ramsden, C. A., Scriven, E. F. V. & Taylor, R. J. Ok.) 353–386 (Elsevier Science, Amsterdam, 2008).

7.

Malkov, A. V., Davis, S. L., Baxendale, I. R., Mitchell, W. L. & Kočovsky, P. Molybdenum(II)-catalyzed allylation of electron-rich aromatics and heteroaromatics. J. Org. Chem. 64, 2751–2764 (1999).

Eight.

Bandini, M., Melloni, A. & Umani-Ronchi, A. New versatile Pd-catalyzed alkylation of indoles by way of nucleophilic allylic substitution: controlling the regioselectivity. Org. Lett. 6, 3199–3202 (2004).

9.

Kimura, M., Futamata, M., Mukai, R. & Tamaru, Y. Pd.catalyzed C3-selective allylation of indoles with allyl alcohols promoted by triethylborane. J. Am. Chem. Soc. 127, 4592–4593 (2005).

10.

Stanley, L. M. & Hartwig, J. F. Iridium-catalyzed regio- and enantioselective N-allylation of indoles. Angew. Chem. Int. Ed. 48, 7841–7844 (2009).

11.

Xu, Ok., Gilles, T. & Breit, B. Uneven synthesis of N-allylic indoles by way of regio- and enantioselective allylation of aryl hydrazines. Nat. Commun. 6, 7616 (2015).

12.

Lee, J. Y., Ha, H., Bae, S., Han, I. & Joo, J. M. Catalytic C-2 allylation of indoles by digital modulation of the indole ring and its utility to the synthesis of functionalized carbazoles. Adv. Synth. Catal. 358, 3458–3470 (2016).

13.

Narayanam, J. M. R. & Stephenson, C. R. J. Seen gentle photoredox catalysis: purposes in natural synthesis. Chem. Soc. Rev. 40, 102–113 (2011).

14.

Prier, C. Ok., Rankic, D. A. & MacMillan, D. W. C. Seen gentle photoredox catalysis with transition metallic complexes: purposes in natural synthesis. Chem. Rev. 113, 5322–5363 (2013).

15.

Meggers, E. Uneven catalysis activated by seen gentle. Chem. Commun. 51, 3290–3301 (2015).

16.

Ravelli, D., Protti, S. & Fagnoni, M. Carbon-carbon bond forming reactions by way of photogenerated intermediates. Chem. Rev. 116, 9850–9913 (2016).

17.

Skubi, Ok. L., Blum, T. R. & Yoon, T. P. Twin catalysis methods in photochemical synthesis. Chem. Rev. 116, 10035–10074 (2016).

18.

Pitre, S. P., McTiernan, C. D. & Scaiano, J. C. Understanding the kinetics and spectroscopy of photoredox catalysis and transition-metal-free options. Acc. Chem. Res. 49, 1320–1330 (2016).

19.

Tellis, J. C. et al. Single-electron transmetalation by way of photoredox/nickel twin catalysis: unlocking a brand new paradigm for sp3-sp2 cross-coupling. Acc. Chem. Res. 49, 1429–1439 (2016).

20.

Gentry, E. C. & Knowles, R. R. Artificial purposes of proton-coupled electron switch. Acc. Chem. Res. 49, 1546–1556 (2016).

21.

Hernandez-Perez, A. C. & Collins, S. Heteroleptic Cu-based sensitizers in photoredox catalysis. Acc. Chem. Res. 49, 1557–1565 (2016).

22.

Goddard, J.-P., Ollivier, C. & Fensterbank, L. Photoredox catalysis for the technology of carbon centered radicals. Acc. Chem. Res. 49, 1924–1936 (2016).

23.

Morris, S. A., Wang, J. & Zheng, N. The prowess of photogenerated amine radical cations in cascade reactions: from carbocycles to heterocycles. Acc. Chem. Res. 49, 1957–1968 (2016).

24.

Fabry, D. C. & Rueping, M. Merging seen gentle photoredox catalysis with metallic catalyzed C-H activations: on the position of oxygen and superoxide ions as oxidants. Acc. Chem. Res. 49, 1969–1979 (2016).

25.

Majek, M. & von Wangelin, A. J. Mechanistic views on natural photoredox catalysis for fragrant substitutions. Acc. Chem. Res. 49, 2316–2327 (2016).

26.

Shaw, M. H., Twilton, J. & MacMillan, D. W. C. Photoredox catalysis in natural chemistry. J. Org. Chem. 81, 6898–6926 (2016).

27.

Zhou, W.-J., Zhang, Y.-H., Gui, Y.-Y., Solar, L. & Yu, D.-G. Merging transition-metal catalysis with photoredox catalysis: an environmentally pleasant technique for C-H functionalization. Synthesis 50, 3359–3378 (2018).

28.

Garrido-Castro, A. F., Carmen Maestro, M. & Alemán, J. Uneven induction in photocatalysis—discovering a brand new aspect to light-driven chemistry. Tetrahedron Lett. 59, 1286–1294 (2018).

29.

Marzo, L., Pagire, S. Ok., Reiser, O. & König, B. Seen-light photocatalysis: does it make a distinction in natural synthesis. Angew. Chem. Int. Ed. 57, 10034–10072 (2018).

30.

Wang, C.-S., Dixneuf, P. H. & Soule, J.-F. Photoredox catalysis for constructing C-C bonds from C(sp2)-H bonds. Chem. Rev. 118, 7532–7585 (2018).

31.

Hari, D. P. & König, B. The photocatalyzed Meerwein arylation: traditional response of aryl diazonium salts in a brand new gentle. Angew. Chem. Int. Ed. 52, 4734–4743 (2013).

32.

Ghosh, I., Marzo, L., Das, A., Shaikh, R. & König, B. Seen-light mediated photoredox catalytic arylation reactions. Acc. Chem. Res. 49, 1566–1577 (2016).

33.

Hari, D. P., Schroll, P. & König, B. Steel-free, visible-light-mediated direct C-H arylation of heteroarenes with aryl diazonium salts. J. Am. Chem. Soc. 134, 2958–2961 (2012).

34.

Ghosh, I., Ghosh, T., Bardagi, J. I. & König, B. Discount of aryl halides by consecutive seen light-induced electron switch processes. Science 346, 725–728 (2014).

35.

Meyer, A. U., Slanina, T., Yao, C.-J. & König, B. Steel-free perfluoroarylation by seen gentle photoredox catalysis. ACS Catal. 6, 369–375 (2016).

36.

Ghosh, I. & König, B. Chromoselective photocatalysis: managed bond activation via light-color regulation of redox potentials. Angew. Chem. Int. Ed. 55, 7676–7679 (2016).

37.

Marzo, L., Ghosh, I., Esteban, F. & König, B. Steel-free photocatalyzed cross coupling of bromoheteroarenes with pyrroles. ACS Catal. 6, 6780–6784 (2016).

38.

Kalyani, D., McMurtrey, Ok. B., Neufeldt, S. R. & Sanford, M. S. Room-temperature C-H arylation: merger of Pd-catalyzed C-H functionalization and visible-light photocatalysis. J. Am. Chem. Soc. 133, 18566–18569 (2011).

39.

Zoller, J., Fabry, D. C. & Rueping, M. Sudden twin position of titanium dioxide within the seen gentle heterogeneous catalysed C-H arylation of heteroarenes. ACS Catal. 5, 3900–3904 (2015).

40.

Maity, P., Kundu, D. & Ranu, B. C. Multigram four-step synthesis of 1,four,7-triazacyclononanes with 2Ra/RbN-functionalization sample by ranging from diethylenetriamine. Eur. J. Org. Chem. 2015, 1727–1734 (2015).

41.

McCarthy, B. G. et al. Construction-property relationships for tailoring phenoxazines as lowering photoredox catalysts. J. Am. Chem. Soc. 140, 5088–5101 (2018).

42.

Roth, H. G., Romero, N. A. & Nicewicz, D. A. Experimental and calculated electrochemical potentials of frequent natural molecules for purposes to single-electron redox chemistry. Synlett 27, 714–723 (2016).

43.

Adenier, A., Chehimi, M. M., Gallardo, I., Pinson, J. & Vila, N. Electrochemical oxidation of aliphatic amines and their attachment to carbon and metallic surfaces. Langmuir 20, 8243–8253 (2004).

44.

Garrido-Castro, A. F., Choubane, H., Daaou, M., Maestro, M. C. & Alemán, J. Uneven radical alkylation of N-sulfinimines beneath seen gentle photocatalytic situations. Chem. Commun. 53, 7764–7767 (2017).

45.

Miranda, M. A., Perez-Prieto, J., Font-Sanchis, E., Kónya, Ok. & Scaiano, J. C. Flash photolysis of 1,Three-dichloro-1,Three-diphenylpropane in polar solvents: technology of a stabilized γ-chloropropyl cation, subsequent formation of a propenyl cation, and nucleophilic trapping of each cations. J. Phys. Chem. A 102, 5724–5727 (1998).

46.

Mattay, J. & Vondenhof, M. Contact and solvent-separated radical ion pairs in natural. In Photoinduced electron switch III. Matters in Present Chemistry (Ed. Mattay, J.) 219–255 (Springer, Heidelberg, 1991).

47.

Kuhn, H. J., Braslavsky, S. E. & Schmidt, R. Chemical actinometry (IUPAC technical report). Pure Appl. Chem. 76, 2105–2146 (2004).

48.

Cheikh, R. B., Chaabouni, R., Laurent, A., Mison, P. & Nafti, A. Synthesis of major allylic amines. Synthesis 685−700 (1983).

49.

Johannsen, M. & Jørgensen, Ok. A. Allylic amination. Chem. Rev. 98, 1689–1708 (1998).

50.

Trost, B. M. & Crawley, M. L. Uneven transition-metal-catalyzed allylic alkylations: purposes in whole synthesis. Chem. Rev. 103, 2921–2943 (2003).

51.

Petranyi, G., Ryder, N. S. & Stutz, A. Allylamine derivatives: new class of artificial antifungal brokers inhibiting fungal squalene epoxidase. Science 224, 1239–1241 (1984).

52.

Stutz, A. Allylamine derivatives—a brand new class of lively substances in antifungal chemotherapy. Angew. Chem. Int. Ed. 26, 320–328 (1987).

53.

Nanavati, S. M. & Silverman, R. B. Mechanisms of inactivation of gamma-aminobutyric acid aminotransferase by the antiepilepsy drug gamma-vinyl GABA (vigabatrin). J. Am. Chem. Soc. 113, 9341–9349 (1991).

54.

Mizuguchi, E. & Achiwa, Ok. Chiral palladium complex-catalyzed synthesis of optically lively vinylchroman. Chem. Pharm. Bull. 45, 1209–1211 (1997).

55.

Nicolaou, Ok. C. et al. Pure product-like combinatorial libraries primarily based on privileged buildings. 1. Common ideas and solid-phase synthesis of benzopyrans. J. Am. Chem. Soc. 122, 9939–9953 (2000).

56.

Cao, B., Park, H. & Joullié, M. M. Complete synthesis of Ustiloxin D. J. Am. Chem. Soc. 124, 520–521 (2002).

57.

Ishibashi, H., Ishihara, Ok. & Yamamoto, H. A brand new synthetic cyclase for polyprenoids: enantioselective whole synthesis of (−)-chromazonarol, (+)-Eight-epi-puupehedione, and (−)-11′-deoxytaondiol methyl ether. J. Am. Chem. Soc. 126, 11122–11123 (2004).

58.

Pochetti, G. et al. Structural perception into peroxisome proliferator-activated receptor γ binding of two ureidofibrate-like enantiomers by molecular dynamics, cofactor interplay evaluation, and site-directed mutagenesis. J. Med. Chem. 53, 4354–4366 (2010).


Supply hyperlink
asubhan

wordpress autoblog

amazon autoblog

affiliate autoblog

wordpress web site

web site growth

Show More

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Close