CO 2 conversion to methane and biomass in obligate methylotrophic methanogens in marine sediments


Ferry JG, Lessner DJ. Methanogenesis in marine sediments. Ann N Y Acad Sci. 2008;1125:147–57.


Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R. Methanogenic archaea: ecologically related variations in vitality conservation. Nat Rev Microbiol. 2008;6:579–91.


Mayumi D, Mochimaru H, Tamaki H, Yamamoto Ok, Yoshioka H, Suzuki Y, et al. Methane manufacturing from coal by a single methanogen. Science. 2016;235:222–5.


Liu Y, Whitman WB. Metabolic, phylogenetic, and ecological variety of the methanogenic archaea. Ann N Y Acad Sci. 2008;1125:171–89.


Zhuang G-C, Elling FJ, Nigro LM, Samarkin V, Joye SB, Teske A, et al. A number of proof for methylotrophic methanogenesis because the dominant methanogenic pathway in hypersaline sediments from the Orca Basin, Gulf of Mexico. Geochim Cosmochim Acta. 2016;187:1–20.


Lazar CS, Parkes RJ, Cragg BA, L’Haridon S, Toffin L. Methanogenic variety and exercise in hypersaline sediments of the centre of the Napoli mud volcano, Jap Mediterranean Sea. Environ Microbiol. 2011;13:2078–91.


Zhuang G-C, Heuer VB, Lazar CS, Goldhammer T, Wendt J, Samarkin VA, et al. Relative significance of methylotrophic methanogenesis in sediments of the Western Mediterranean Sea. Geochim Cosmochim Acta. 2018;224:171–86.


Maltby J, Steinle L, Löscher CR, Bange HW, Fischer MA, Schmidt M, et al. Microbial methanogenesis within the sulfate-reducing zone of sediments within the Eckernförde Bay, SW Baltic Sea. Biogeosciences. 2018;15:137–57.


Yanagawa Ok, Tani A, Yamamoto N, Hachikubo A, Kano A, Matsumoto R, et al. Biogeochemical cycle of methanol in anoxic deep-sea sediments. Microbes Environ. 2016;31:190–three.


Zhuang G-C, Lin Y-S, Elvert M, Heuer VB, Hinrichs Ok-U. Gasoline chromatographic evaluation of methanol and ethanol in marine sediment pore waters: validation and implementation of three pretreatment methods. Mar Chem. 2014;160:82–90.


Oremland RS, Polcin S. Methanogenesis and sulfate discount: aggressive and noncompetitive substrates in estuarine sediments. Appl Environ Microbiol. 1982;44:1270–6.


Florencio L, Area JA, Lettinga G. Significance of cobalt for particular person trophic teams in an anaerobic methanol-degrading consortium. Appl Environ Microbiol. 1994;60:227–34.


Balch WE, Schoberth S, Tanner RS, Wolfe RS. Acetobacterium, a brand new genus of hydrogen-oxidizing, carbon dioxide-reducing, anaerobic micro organism. Int J Syst Evol Microbiol. 1977;27:355–61.


Lever MA. Acetogenesis within the energy-starved deep biosphere – a paradox? Entrance Microbiol. 2012;2:284.


Oni O, Miyatake T, Kasten S, Richter-Heitmann T, Fischer D, Wagenknecht L, et al. Distinct microbial populations are tightly linked to the profile of dissolved iron within the methanic sediments of the Helgoland mud space, North Sea. Entrance Microbiol. 2015;6:365.


Evans PN, Parks DH, Chadwick GL, Robbins SJ, Orphan VJ, Golding SD, et al. Methane metabolism within the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science. 2015;350:432–eight.


Weimer PJ, Zeikus JG. Acetate metabolism in Methanosarcina barkeri. Arch Microbiol. 1978;119:175–82.


Summons RE, Franzmann PD, Nichols PD. Carbon isotopic fractionation related to methylotrophic methanogenesis. Org Geochem. 1998;28:465–75.


Hippe H, Caspari D, Fiebig Ok, Gottschalk G. Utilization of trimethylamine and different N-methyl compounds for progress and methane formation by Methanosarcina barkeri. Proc Natl Acad Sci USA. 1979;76:494–eight.


Teeling H, Glockner FO. Present alternatives and challenges in microbial metagenome evaluation—a bioinformatic perspective. Temporary Bioinform. 2012;13:728–42.


Singer E, Wagner M, Woyke T. Capturing the genetic make-up of the lively microbiome in situ. ISME J. 2017;11:1949–63.


Neelakanta G, Sultana H. Using metagenomic approaches to research adjustments in microbial communities. Microbiol Insights. 2013;6:37–48.


Thauer RK. Anaerobic oxidation of methane with sulfate: on the reversibility of the reactions which can be catalyzed by enzymes additionally concerned in methanogenesis from CO2. Curr Opin Microbiol. 2011;14:292–9.


Feijo Delgado F, Cermak N, Hecht VC, Son S, Li Y, Knudsen SM, et al. Intracellular water trade for measuring the dry mass, water mass and adjustments in chemical composition of residing cells. PLoS ONE. 2013;eight:e67590.


Friedrich MW. Secure-isotope probing of DNA: insights into the perform of uncultivated microorganisms from isotopically labeled metagenomes. Curr Opin Biotechnol. 2006;17:59–66.


Lueders T. Secure isotope probing of hydrocarbon-degraders. In: McGenity TJ, Timmis KN, Nogales B (eds). Handbook of hydrocarbon and lipid microbiology. Springer: Berlin, Heidelberg, 2010, pp 4011–26.


Grob C, Taubert M, Howat AM, Burns OJ, Dixon JL, Richnow HH, et al. Combining metagenomics with metaproteomics and secure isotope probing reveals metabolic pathways utilized by a naturally occurring marine methylotroph. Environ Microbiol. 2015;17:4007–18.


Fortunato CS, Huber JA. Coupled RNA-SIP and metatranscriptomics of lively chemolithoautotrophic communities at a deep-sea hydrothermal vent. ISME J. 2016;10:1925–38.


Manefield M, Whiteley AS, Ostle N, Ineson P, Bailey MJ. Technical issues for RNA- primarily based secure isotope probing an strategy to associating microbial variety with microbial neighborhood perform. Speedy Commun Mass Spectrom. 2002;16:2179–83.


Vandieken V, Thamdrup B. Identification of acetate-oxidizing micro organism in a coastal marine floor sediment by RNA-stable isotope probing in anoxic slurries and intact cores. FEMS Microbiol Ecol. 2013;84:373–86.


Lueders T, Wagner B, Claus P, Friedrich MW. Secure isotope probing of rRNA and DNA reveals a dynamic methylotroph neighborhood and trophic interactions with fungi and protozoa in oxic rice discipline soil. Environ Microbiol. 2003;6:60–72.


Neufeld JD, Schafer H, Cox MJ, Boden R, McDonald IR, Murrell JC. Secure-isotope probing implicates Methylophaga spp and novel Gammaproteobacteria in marine methanol and methylamine metabolism. ISME J. 2007;1:480–91.


Weimer PJ, Zeikus JG. One carbon metabolism in methanogenic micro organism. Arch Microbiol. 1978;119:47–57.


Wegener G, Kellermann MY, Elvert M. Monitoring exercise and performance of microorganisms by secure isotope probing of membrane lipids. Curr Opin Biotechnol. 2016;41:43–52.


Boschker HTS, Nold SC, Wellsbury P, Bos D, de Graaf W, Pel R, et al. Direct linking of microbial populations to particular biogeochemical processes by 13C-labelling of biomarkers. Nature. 1998;392:801–5.


Reyes C, Schneider D, Thürmer A, Kulkarni A, Lipka M, Sztejrenszus SY, et al. Doubtlessly lively iron, sulfur, and sulfate lowering micro organism in skagerrak and bothnian bay sediments. Geomicrobiol J. 2017;34:840–50.


Widdel F, Pfennig N. Research on dissimilatory sulfate-reducing micro organism that decompose fatty acids I. Isolation of latest sulfate-reducing micro organism enriched with acetate from saline environments. Description of Desulfobacter postgateigen. nov., sp. nov. Arch Microbiol. 1981;134:282–5.


Widdel F, Kohring GW, Mayer F. Research on dissimilatory sulfate-reducing micro organism that decompose fatty acids III. Characterization of the filamentous gliding Desulfonema limicola gen. nov. sp. nov., and Desulfonema magnum sp. nov. Arch Microbiol. 1983;134:286–94.


Aromokeye DA, Richter-Heitmann T, Oni OE, Kulkarni A, Yin X, Kasten S, et al. Temperature controls crystalline iron oxide utilization by microbial communities in methanic ferruginous marine sediment incubations. Entrance Microbiol. 2018;9:2574.


Ertefai TF, Heuer VB, Prieto-Mollar X, Vogt C, Sylva SP, Seewald J, et al. The biogeochemistry of sorbed methane in marine sediments. Geochim Cosmochim Acta. 2010;74:6033–48.


Lueders T, Manefield M, Friedrich MW. Enhanced sensitivity of DNA- and rRNA-based secure isotope probing by fractionation and quantitative evaluation of isopycnic centrifugation gradients. Environ Microbiol. 2004;6:73–eight.


Friedrich MW. Methyl-coenzyme M reductase genes: distinctive useful markers for methanogenic and anaerobic methane-oxidizing Archaea. Strategies Enzymol. 2005;397:428–42.


Sturt HF, Summons RE, Smith Ok, Elvert M, Hinrichs KU. Intact polar membrane lipids in prokaryotes and sediments deciphered by high-performance liquid chromatography/electrospray ionization multistage mass spectrometry—new biomarkers for biogeochemistry and microbial ecology. Speedy Commun Mass Spectrom. 2004;18:617–28.


Zhu C, Lipp JS, Wörmer L, Becker KW, Schröder J, Hinrichs Ok-U. Complete glycerol ether lipid fingerprints via a novel reversed part liquid chromatography–mass spectrometry protocol. Org Geochem. 2013;65:53–62.


Liu X-L, Lipp JS, Simpson JH, Lin Y-S, Summons RE, Hinrichs Ok-U. Mono- and dihydroxyl glycerol dibiphytanyl glycerol tetraethers in marine sediments: Identification of each core and intact polar lipid types. Geochim Cosmochim Acta. 2012;89:102–15.


Kellermann MY, Yoshinaga MY, Wegener G, Krukenberg V, Hinrichs Ok-U. Tracing the manufacturing and destiny of particular person archaeal intact polar lipids utilizing secure isotope probing. Org Geochem. 2016;95:13–20.


Boschker HTS, Middelburg JJ. Secure isotopes and biomarkers in microbial ecology. FEMS Microbiol Ecol. 2002;40:85–95.


Kato S, Hashimoto Ok, Watanabe Ok. Methanogenesis facilitated by electrical syntrophy through (semi)conductive iron-oxide minerals. Environ Microbiol. 2012;14:1646–54.


Kato S, Nakamura R, Kai F, Watanabe Ok, Hashimoto Ok. Respiratory interactions of soil micro organism with (semi)conductive iron-oxide minerals. Environ Microbiol. 2010;12:3114–23.


Bond DR, Lovley DR. Discount of Fe(III) oxide by methanogens within the presence and absence of extracellular quinones. Environ Microbiol. 2002;Four:115–24.


Lovley DR, Fraga JL, Coates JD, Blunt-Harris EL. Humics as an electron donor for anaerobic respiration. Environ Microbiol. 1999;1:89–99.


Borrel G, Harris HM, Tottey W, Mihajlovski A, Parisot N, Peyretaillade E, et al. Genome sequence of “Candidatus Methanomethylophilus alvus” Mx1201, a methanogenic archaeon from the human intestine belonging to a seventh order of methanogens. J Bacteriol. 2012;194:6944–5.


Borrel G, O’Toole PW, Harris HM, Peyret P, Brugere JF, Gribaldo S. Phylogenomic information assist a seventh order of methylotrophic methanogens and supply insights into the evolution of methanogenesis. Genome Biol Evol. 2013;5:1769–80.


Choquet CG, Richards JC, Patel GB, Sprott GD. Ribose biosynthesis in methanogenic micro organism. Arch Microbiol. 1994a;161:481–eight.


Choquet CG, Richards JC, Patel GB, Sprott GD. Purine and pyrimidine biosynthesis in methanogenic micro organism. Arch Microbiol. 1994b;161:471–80.


Ekiel I, Smith ICP, Sportt GD. Biosynthetic pathways in Methanospirillum hungatei as decided by 13C nuclear magnetic resonance. J Bacteriol. 1983;156:316–26.


Nyce GW, White RH. dTMP biosynthesis in archaea. J Bacteriol. 1996;178:914–6.


Soderberg T. Biosynthesis of ribose-5-phosphate and erythrose-Four-phosphate in archaea: a phylogenetic evaluation of archaeal genomes. Archaea. 2005;1:347–52.


Sorokin DY, Makarova KS, Abbas B, Ferrer M, Golyshin PN, Galinski EA, et al. Discovery of extraordinarily halophilic, methyl-reducing euryarchaea offers insights into the evolutionary origin of methanogenesis. Nat Microbiol. 2017;2:17081.


Aoyagi T, Morishita F, Sugiyama Y, Ichikawa D, Mayumi D, Kikuchi Y, et al. Identification of lively and taxonomically various 1,Four-dioxane degraders in a full-scale activated sludge system by high-sensitivity secure isotope probing. ISME J. 2018;12:2376–88.


Wegener G, Niemann H, Elvert M, Hinrichs KU, Boetius A. Assimilation of methane and inorganic carbon by microbial communities mediating the anaerobic oxidation of methane. Environ Microbiol. 2008;10:2287–98.


Nishihara M, Koga Y. Hydroxyarchaetidylserine and hydroxyarchaetidyl-myo-inositol in Methanosarcina barkeri: polar lipids with a brand new ether core portion. Biochim Biophys Acta. 1991;1082:211–7.


Nishihara M, Utagawa M, Akutsu H, Koga Y. Archaea comprise a novel diether phosphoglycolipid with a polar head group an identical to the conserved core of eucaryal glycosyl phosphatidylinosito. J Biol Chem. 1992;267:12432–5.


Pancost RD, McClymont EL, Bingham EM, Roberts Z, Charman DJ, Hornibrook ERC, et al. Archaeol as a methanogen biomarker in ombrotrophic bogs. Org Geochem. 2011;42:1279–87.


Elling FJ, Könneke M, Lipp JS, Becker KW, Gagen EJ, Hinrichs Ok-U. Results of progress part on the membrane lipid composition of the thaumarchaeon Nitrosopumilus maritimus and their implications for archaeal lipid distributions within the marine atmosphere. Geochim Cosmochim Acta. 2014;141:579–97.


Blumenberg M, Seifert R, Reitner J, Pape T, Michaelis W. Membrane lipid patterns typify distinct anaerobic methanotrophic consortia. Proc Natl Acad Sci USA. 2004;101:11111–6.


Rossel PE, Lipp JS, Fredricks HF, Arnds J, Boetius A, Elvert M, et al. Intact polar lipids of anaerobic methanotrophic archaea and related micro organism. Org Geochem. 2008;39:992–9.


Yu T, Wu W, Liang W, Lever MA, Hinrichs KU, Wang F. Development of sedimentary Bathyarchaeota on lignin as an vitality supply. Proc Natl Acad Sci USA. 2018;115:6022–7.


Allen MA, Lauro FM, Williams TJ, Burg D, Siddiqui KS, De Francisci D, et al. The genome sequence of the psychrophilic archaeon, Methanococcoides burtonii: the position of genome evolution in chilly adaptation. ISME J. 2009;three:1012–35.


Grochowski LL, Xu H, White RH. Methanocaldococcus jannaschii makes use of a modified mevalonate pathway for biosynthesis of isopentenyl diphosphate. J Bacteriol. 2006;188:3192–eight.


Nichols DS, Miller MR, Davies NW, Goodchild A, Raftery M, Cavicchioli R. Chilly adaptation within the Antarctic archaeon Methanococcoides burtonii includes membrane lipid unsaturation. J Bacteriol. 2004;186:8508–15.


Thauer RK, Kaster AK, Goenrich M, Schick M, Hiromoto T, Shima S. Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H2 storage. Annu Rev Biochem. 2010;79:507–36.


Lovley DR. Completely satisfied collectively: microbial communities that hook as much as swap electrons. ISME J. 2017;11:327–36.


Rotaru AE, Shrestha PM, Liu F, Markovaite B, Chen S, Nevin KP, et al. Direct interspecies electron switch between Geobacter metallireducensand Methanosarcina barkeri. Appl Environ Microbiol. 2014;80:4599–605.


Rotaru A-E, Shrestha PM, Liu F, Shrestha M, Shrestha D, Embree M, et al. A brand new mannequin for electron circulation throughout anaerobic digestion: direct interspecies electron switch to Methanosaeta for the discount of carbon dioxide to methane. Power Environ Sci. 2014;7:408–15.


Wang LY, Nevin KP, Woodard TL, Mu BZ, Lovley DR. Increasing the weight loss plan for DIET: electron donors supporting direct interspecies electron switch (DIET) in outlined co-cultures. Entrance Microbiol. 2016;7:236.


Guan Y, Ngugi D, Blom J, Ali S, Ferry JG, Stingl U. Draft genome sequence of an obligately methylotrophic methanogen, Methanococcoides methylutens, remoted from marine sediment. Genome Announc. 2014;2:e01184–14.


Kellermann MY, Wegener G, Elvert M, Yoshinaga MY, Lin YS, Holler T, et al. Autotrophy as a predominant mode of carbon fixation in anaerobic methane-oxidizing microbial communities. Proc Natl Acad Sci USA. 2012;109:19321–6.


Weiss MC, Sousa FL, Mrnjavac N, Neukirchen S, Roettger M, Nelson-Sathi S, et al. The physiology and habitat of the final common frequent ancestor. Nat Microbiol. 2016;1:16116.


Qin S, Solar Y, Tang Y. Early hydrocarbon era of algae and influences of inorganic environments throughout low temperature simulation. Power Explor Exploit. 2008;26:377–96.


Koga Y, Morii H. Biosynthesis of ether-type polar lipids in archaea and evolutionary issues. Microbiol Mol Biol Rev. 2007;71:97–120.


Ekiel I, Sportt GD, Patel GB. Acetate and CO2 assimilation by Methanothrix concilii. J Bacteriol. 1985;162:905–eight.

Supply hyperlink

wordpress autoblog

amazon autoblog

affiliate autoblog

wordpress web site

web site growth

Show More

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *