Chemistry

Coherent diffractive imaging of microtubules utilizing an X-ray laser


1.

McIntosh, J. R. Mitosis. Chilly Spring Harb. Perspect. Biol. eight a023218 (2016).

2.

Desai, A. & Mitchison, T. J. Microtubule polymerization dynamics. Annu Rev. Cell Dev. Biol. 13, 83–117 (1997).

three.

Mitchison, T. J. & Salmon, E. D. Mitosis: a historical past of division. Nat. Cell Biol. three, E17–E21 (2001).

four.

Tilney, L. G. et al. Microtubules: proof for 13 protofilaments. J. Cell Biol. 59, 267–275 (1973).

5.

Mitchison, T. & Kirschner, M. Dynamic instability of microtubule progress. Nature 312, 237–242 (1984).

6.

Amos, L. & Klug, A. Association of subunits in flagellar microtubules. J. Cell Sci. 14, 523–549 (1974).

7.

Mandelkow, E., Thomas, J. & Cohen, C. Microtubule construction at low decision by x-ray diffraction. Proc. Natl Acad. Sci. USA 74, 3370–3374 (1977).

eight.

Mandelkow, E. M., Harmsen, A., Mandelkow, E. & Bordas, J. X-ray kinetic research of microtubule meeting utilizing synchrotron radiation. Nature 287, 595–599 (1980).

9.

Choi, M. C. et al. Human microtubule-associated-protein tau regulates the variety of protofilaments in microtubules: a synchrotron x-ray scattering research. Biophys. J. 97, 519–527 (2009).

10.

Muller-Reichert, T., Chretien, D., Severin, F. & Hyman, A. A. Structural modifications at microtubule ends accompanying GTP hydrolysis: data from a slowly hydrolyzable analogue of GTP, guanylyl (alpha,beta)methylenediphosphonate. Proc. Natl Acad. Sci. USA 95, 3661–3666 (1998).

11.

Redwine, W. B. et al. Structural foundation for microtubule binding and launch by dynein. Science 337, 1532–1536 (2012).

12.

Zhang, R., Alushin, G. M., Brown, A. & Nogales, E. Mechanistic Origin of Microtubule Dynamic Instability and Its Modulation by EB Proteins. Cell 162, 849–859 (2015).

13.

Kellogg, E. H. et al. Insights into the distinct mechanisms of motion of taxane and non-taxane microtubule stabilizers from Cryo-EM constructions. J. Mol. Biol. 429, 633–646 (2017).

14.

Kellogg, E. H. et al. Close to-atomic mannequin of microtubule-tau interactions. Science 360, 1242–1246 (2018).

15.

Nogales, E., Wolf, S. G., Khan, I. A., Luduena, R. F. & Downing, Ok. H. Construction of tubulin at 6.5 A and site of the taxol-binding website. Nature 375, 424–427 (1995).

16.

Nogales, E., Wolf, S. G. & Downing, Ok. H. Construction of the alpha beta tubulin dimer by electron crystallography. Nature 391, 199–203 (1998).

17.

Gigant, B. et al. The four A X-ray construction of a tubulin:stathmin-like area advanced. Cell 102, 809–816 (2000).

18.

Prota, A. E. et al. Molecular mechanism of motion of microtubule-stabilizing anticancer brokers. Science 339, 587–590 (2013).

19.

Wang, W. et al. Perception into microtubule disassembly by kinesin-13s from the construction of Kif2C sure to tubulin. Nat. Commun. eight, 70 (2017).

20.

Neutze, R., Wouts, R., van der Spoel, D., Weckert, E. & Hajdu, J. Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406, 752–757 (2000).

21.

Chapman, H. N. et al. Femtosecond time-delay X-ray holography. Nature 448, 676–679 (2007).

22.

Chapman, H. N. et al. Femtosecond X-ray protein nanocrystallography. Nature 470, 73–77 (2011).

23.

Boutet, S. et al. Excessive-resolution protein construction dedication by serial femtosecond crystallography. Science 337, 362–364 (2012).

24.

Seibert, M. M. et al. Single mimivirus particles intercepted and imaged with an X-ray laser. Nature 470, 78–81 (2011).

25.

Munke, A. et al. Coherent diffraction of single Rice Dwarf virus particles utilizing arduous X-rays on the Linac Coherent Mild Supply. Sci. Information three, 160064 (2016).

26.

Ekeberg, T. et al. Three-dimensional reconstruction of the enormous mimivirus particle with an x-ray free-electron laser. Phys. Rev. Lett. 114, 098102 (2015).

27.

Lundholm, I. V. et al. Concerns for three-dimensional picture reconstruction from experimental information in coherent diffractive imaging. IUCrJ 5, 531–541 (2018).

28.

Hantke, M. F. et al. A knowledge set from flash X-ray imaging of carboxysomes. Sci. Information three, 160061 (2016).

29.

Kim, Y. et al. Visualization of a mammalian mitochondrion by coherent X-ray diffractive imaging. Sci. Rep. 7, 1850 (2017).

30.

Aquila, A. et al. The linac coherent gentle supply single particle imaging highway map. Struct. Dyn. 2, 041701 (2015).

31.

Popp, D. et al. Circulate-aligned, single-shot fiber diffraction utilizing a femtosecond X-ray free-electron laser. Cytoskeleton 74, 472–481 (2017).

32.

Wojtas, D. H. et al. Evaluation of XFEL serial diffraction information from particular person crystalline fibrils. IUCrJ four, 795–811 (2017).

33.

Seuring, C. et al. Femtosecond X-ray coherent diffraction of aligned amyloid fibrils on low background graphene. Nat. Commun. 9, 1836 (2018).

34.

DePonte, D. P. et al. Gasoline dynamic digital nozzle for technology of microscopic droplet streams. J. Phys. D-Appl. Phys. 41, 195505 (2008).

35.

Weierstall, U., Spence, J. C. & Doak, R. B. Injector for scattering measurements on totally solvated biospecies. Rev. Sci. Instrum. 83, 035108 (2012).

36.

Scheres, S. H., Nunez-Ramirez, R., Sorzano, C. O., Carazo, J. M. & Marabini, R. Picture processing for electron microscopy single-particle evaluation utilizing XMIPP. Nat. Protoc. three, 977–990 (2008).

37.

Sorzano, C. O. et al. XMIPP: a brand new technology of an open-source picture processing package deal for electron microscopy. J. Struct. Biol. 148, 194–204 (2004).

38.

Gerchberg, R. W. & Saxton, W. O. A. A sensible algorithm for the dedication of part from picture and diffraction aircraft footage. Optik 35, 237–250 (1971).

39.

Fienup, J. R. Reconstruction of an object from the modulus of its Fourier rework. Choose. Lett. three, 27–29 (1978).

40.

Dumontet, C. & Jordan, M. A. Microtubule-binding brokers: a dynamic subject of most cancers therapeutics. Nat. Rev. Drug Disco. 9, 790–803 (2010).

41.

Boutet, S. & Williams, G. J. The Coherent X-ray Imaging (CXI) instrument on the Linac Coherent Mild Supply (LCLS). New J. Phys. 12, 035024 (2010).

42.

Emma, P. et al. First lasing and operation of an angstrom-wavelength free-electron laser. Nat. Photon four, 641–647 (2010).

43.

Hart, P. et al. The CSPAD megapixel x-ray digital camera at LCLS. Proc. SPIE 8504, https://doi.org/10.1117/12.930924 (2012).

44.

Barty, A. et al. Cheetah: software program for high-throughput discount and evaluation of serial femtosecond X-ray diffraction information. J. Appl Crystallogr. 47, 1118–1131 (2014).

45.

Arnal, I. & Wade, R. H. How does taxol stabilize microtubules? Curr. Biol. 5, 900–908 (1995).

46.

Hyman, A. A., Chretien, D., Arnal, I. & Wade, R. H. Structural modifications accompanying GTP hydrolysis in microtubules: data from a slowly hydrolyzable analogue guanylyl-(alpha,beta)-methylene-diphosphonate. J. Cell Biol. 128, 117–125 (1995).

47.

Alushin, G. M. et al. The Ndc80 kinetochore advanced types oligomeric arrays alongside microtubules. Nature 467, 805–810 (2010).

48.

Matesanz, R. et al. Modulation of microtubule interprotofilament interactions by modified taxanes. Biophys. J. 101, 2970–2980 (2011).

49.

Kellogg, E. H. et al. Close to-atomic cryo-EM construction of PRC1 sure to the microtubule. Proc. Natl Acad. Sci. USA 113, 9430–9439 (2016).

50.

van der Schot, G. et al. Imaging single cells in a beam of stay cyanobacteria with an X-ray laser. Nat. Commun. 6, 5704 (2015).

51.

Hunter, M. S. et al. Fastened-target protein serial microcrystallography with an x-ray free electron laser. Sci. Rep. four, 6026 (2014).

52.

Henderson, R. Realizing the potential of electron cryo-microscopy. Q Rev. Biophys. 37, three–13 (2004).

53.

Bai, X. C., McMullan, G. & Scheres, S. H. How cryo-EM is revolutionizing structural biology. Tendencies Biochem Sci. 40, 49–57 (2015).

54.

Schek, H. T., Gardner, M. Ok., Cheng, J., Odde, D. J. & Hunt, A. J. Microtubule meeting dynamics on the nanoscale. Curr. Biol. 17, 1445.1455 (2007).

55.

Castoldi, M. & Popov, A. V. Purification of mind tubulin by means of two cycles of polymerization-depolymerization in a high-molarity buffer. Protein Expr. Purif. 32, 83–88 (2003).

56.

Shelanski, M. L., Gaskin, F. & Cantor, C. R. Microtubule meeting within the absence of added nucleotides. Proc. Natl Acad. Sci. USA 70, 765–768 (1973).

57.

Scheres, S. H. et al. Most-likelihood multi-reference refinement for electron microscopy pictures. J. Mol. Biol. 348, 139–149 (2005).

58.

Maia, F. R. The Coherent X-ray Imaging Information Financial institution. Nat. Strategies 9, 854–855 (2012).

59.

Harimoorthy, R. Impact of Microwaves on Microtubule Construction and Perform probed by Mild and X-ray Scattering PhD thesis, College of Gothenburg (2018).


Supply hyperlink
asubhan

wordpress autoblog

amazon autoblog

affiliate autoblog

wordpress web site

web site growth

Show More

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Close