Constructions of the otopetrin proton channels Otop1 and Otop3


DeCoursey, T. E. The voltage-gated proton channel: a riddle, wrapped in a thriller, inside an enigma. Biochemistry 54, 3250–3268 (2015).


Fogel, M. & Hastings, J. W. Bioluminescence: mechanism and mode of management of scintillon exercise. Proc. Natl Acad. Sci. USA 69, 690–693 (1972).


Fischer, H. Perform of proton channels in lung epithelia. Wiley Interdiscip. Rev. Membr. Transp. Sign 1, 247–258 (2012).


Chang, R. B., Waters, H. & Liman, E. R. A proton present drives motion potentials in genetically recognized bitter style cells. Proc. Natl Acad. Sci. USA 107, 22320–22325 (2010).


Richter, T. A., Caicedo, A. & Roper, S. D. Bitter style stimuli evoke Ca2+ and pH responses in mouse style cells. J. Physiol. 547, 475–483 (2003).


Lyall, V. et al. Lower in rat style receptor cell intracellular pH is the proximate stimulus in bitter style transduction. Am. J. Physiol. Cell Physiol. 281, C1005–C1013 (2001).


Decoursey, T. E. Voltage-gated proton channels. Compr. Physiol. 2, 1355–1385 (2012).


Ramsey, I. S., Moran, M. M., Chong, J. A. & Clapham, D. E. A voltage-gated proton-selective channel missing the pore area. Nature 440, 1213–1216 (2006).


Sasaki, M., Takagi, M. & Okamura, Y. A voltage sensor-domain protein is a voltage-gated proton channel. Science 312, 589–592 (2006).


Tu, Y. H. et al. An evolutionarily conserved gene household encodes proton-selective ion channels. Science 359, 1047–1050 (2018).


Hurle, B. et al. Non-syndromic vestibular dysfunction with otoconial agenesis in tilted/mergulhador mice brought on by mutations in otopetrin 1. Hum. Mol. Genet. 12, 777–789 (2003).


Hughes, I. et al. Otopetrin 1 is required for otolith formation within the zebrafish danio rerio. Dev. Biol. 276, 391–402 (2004).


Sollner, C., Schwarz, H., Geisler, R. & Nicolson, T. Mutated otopetrin 1 impacts the genesis of otoliths and the localization of Starmaker in zebrafish. Dev. Genes Evol. 214, 582–590 (2004).


Wang, G. X. et al. Otopetrin 1 protects mice from obesity-associated metabolic dysfunction by means of attenuating adipose tissue irritation. Diabetes 63, 1340–1352 (2014).


Wu, C. et al. BioGPS: an extensible and customizable portal for querying and organizing gene annotation sources. Genome Biol. 10, R130 (2009).


Parikh, Okay. et al. Colonic epithelial cell range in well being and inflammatory bowel illness. Nature 567, 49–55 (2019).


Kawate, T. & Gouaux, E. Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Construction 14, 673–681 (2006).


Quistgaard, E. M., Low, C., Guettou, F. & Nordlund, P. Understanding transport by the foremost facilitator superfamily (MFS): constructions pave the best way. Nat. Rev. Mol. Cell Biol. 17, 123–132 (2016).


Abramson, J. et al. Construction and mechanism of the lactose permease of Escherichia coli. Science 301, 610–615 (2003).


Murakami, S., Nakashima, R., Yamashita, E. & Yamaguchi, A. Crystal construction of bacterial multidrug efflux transporter AcrB. Nature 419, 587–593 (2002).


Gupta, Okay. et al. The position of interfacial lipids in stabilizing membrane protein oligomers. Nature 541, 421–424 (2017).


Wu, H. X. et al. Construction of a Class C GPCR metabotropic glutamate receptor 1 certain to an allosteric modulator. Science 344, 58–64 (2014).


Nagle, J. F. & Morowitz, H. J. Molecular mechanisms for proton transport in membranes. Proc. Natl Acad. Sci. USA 75, 298–302 (1978).


Hong, M. & DeGrado, W. F. Structural foundation for proton conduction and inhibition by the influenza M2 protein. Protein Sci. 21, 1620–1633 (2012).


Pinto, L. H. et al. A functionally outlined mannequin for the M2 proton channel of influenza A virus suggests a mechanism for its ion selectivity. Proc. Natl Acad. Sci. USA 94, 11301–11306 (1997).


Ramsey, I. S. et al. An aqueous H+ permeation pathway within the voltage-gated proton channel Hv1. Nat. Struct. Mol. Biol. 17, 869–875 (2010).


Dudev, T. et al. Selectivity mechanism of the voltage-gated proton channel, HV1. Sci. Rep. 5, 10320 (2015).


Chamberlin, A. et al. Hydrophobic plug capabilities as a gate in voltage-gated proton channels. Proc. Natl Acad. Sci. USA 111, E273–E282 (2014).


Aryal, P., Sansom, M. S. & Tucker, S. J. Hydrophobic gating in ion channels. J. Mol. Biol. 427, 121–130 (2015).


Morgan, D. et al. Peregrination of the selectivity filter delineates the pore of the human voltage-gated proton channel hHV1. J. Gen. Physiol. 142, 625–640 (2013).


DeCoursey, T. E. CrossTalk proposal: proton permeation by means of HV 1 requires transient protonation of a conserved aspartate within the S1 transmembrane helix. J. Physiol. 595, 6793–6795 (2017).


Chen, H. et al. Cost delocalization in proton channels, I: the aquaporin channels and proton blockage. Biophys. J. 92, 46–60 (2007).


Chen, Q., Zeng, W., She, J., Bai, X. & Jiang, Y. Structural and useful characterization of an otopetrin household proton channel. eLife eight, e46710 (2019).


Grinkova, Y. V., Denisov, I. G. & Sligar, S. G. Engineering prolonged membrane scaffold proteins for self-assembly of soluble nanoscale lipid bilayers. Protein Eng. Des. Sel. 23, 843–848 (2010).


Suloway, C. et al. Automated molecular microscopy: the brand new Leginon system. J. Struct. Biol. 151, 41–60 (2005).


Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced movement for improved cryo-electron microscopy. Nat. Strategies 14, 331–332 (2017).


Zhang, Okay. Gctf: real-time CTF dedication and correction. J. Struct. Biol. 193, 1–12 (2016).


Kimanius, D., Forsberg, B. O., Scheres, S. H. W. & Lindahl, E. Accelerated cryo-EM construction dedication with parallelisation utilizing GPUs in RELION-2. eLife 5, e18722 (2016).


Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for fast unsupervised cryo-EM construction dedication. Nat. Strategies 14, 290–296 (2017).


Zivanov, J. et al. New instruments for automated high-resolution cryo-EM construction dedication in RELION-Three. eLife 7, e42166 (2018).


Pettersen, E. F. et al. UCSF Chimera–a visualization system for exploratory analysis and evaluation. J. Comput. Chem. 25, 1605–1612 (2004).


Afonine, P. V. et al. New instruments for the evaluation and validation of cryo-EM maps and atomic fashions. Acta Crystallogr. D 74, 814–840 (2018).


Emsley, P. & Cowtan, Okay. Coot: model-building instruments for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).


Adams, P. D. et al. PHENIX: a complete Python-based system for macromolecular construction resolution. Acta Crystallogr. D 66, 213–221 (2010).


Wang, R. Y. R. et al. Automated construction refinement of macromolecular assemblies from cryo-EM maps utilizing Rosetta. eLife 5, e17219 (2016).


Hughes, I. et al. Identification of the Otopetrin Area, a conserved area in vertebrate otopetrins and invertebrate otopetrin-like members of the family. BMC Evol. Biol. eight, 41 (2008).


Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein constructions and complexes. Nucleic Acids Res. 46, W296–W303 (2018).


The PyMOL Molecular Graphics System, Schrödinger, LLC. (2018).


Pettersen, E. F. et al. UCSF Chimera – a visualization system for exploratory analysis and evaluation. J. Comput. Chem. 25, 1605–1612 (2004).


Goddard, T. D. et al. UCSF ChimeraX: assembly fashionable challenges in visualization and evaluation. Protein Sci. 27, 14–25 (2018).


Ashkenazy, H. et al. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 44, W344–W350 (2016).


Landau, M. et al. ConSurf 2005: the projection of evolutionary conservation scores of residues on protein constructions. Nucleic Acids Res. 33, W299–W302 (2005).


Sievers, F. et al. Quick, scalable era of high-quality protein a number of sequence alignments utilizing Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).


Robert, X. & Gouet, P. Deciphering key options in protein constructions with the brand new ENDscript server. Nucleic Acids Res. 42, W320–W324 (2014).


GROMACS. Excessive efficiency molecular simulations by means of multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).


de Jong, D. H. et al. Improved parameters for the martini coarse-grained protein pressure discipline. J. Chem. Principle Comput. 9, 687–697 (2013).


Stansfeld, P. J. et al. MemProtMD: automated insertion of membrane protein constructions into specific lipid membranes. Construction 23, 1350–1361 (2015).


Stansfeld, P. J. & Sansom, M. S. P. From coarse grained to atomistic: a serial multiscale method to membrane protein simulations. J. Chem. Principle Comput. 7, 1157–1166 (2011).


Greatest, R. B. et al. Optimization of the additive CHARMM all-atom protein pressure discipline concentrating on improved sampling of the spine phi, psi and Facet-Chain chi(1) and chi(2) Dihedral Angles. J. Chem. Principle Comput. eight, 3257–3273 (2012).


Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparability of easy potential capabilities for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).


Parrinello, M. & Rahman, A. Polymorphic transitions in single-crystals – a brand new molecular-dynamics technique. J. Appl Phys. 52, 7182–7190 (1981).


Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling by means of velocity rescaling. J. Chem. Phys. 126, 014101 (2007).


Hess, B. P-LINCS: a parallel linear constraint solver for molecular simulation. J. Chem. Principle Comput. four, 116–122 (2008).


Essmann, U. et al. A easy particle mesh Ewald technique. J. Chem. Phys. 103, 8577–8593 (1995).


Humphrey, W., Dalke, A. & Schulten, Okay. VMD: visible molecular dynamics. J. Mol. Graph. 14, 33–38 (1996). 27–38.


Sheather, S. J. & Jones, M. C. A dependable data-based bandwidth choice technique for kernel density-estimation. J. Roy. Stat. Soc. B Met. 53, 683–690 (1991).

Supply hyperlink

wordpress autoblog

amazon autoblog

affiliate autoblog

wordpress web site

web site growth

Show More

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *