Chemistry

Contributions of sociometabolic analysis to sustainability science


1.

IPCC Local weather Change 2014: Mitigation of Local weather Change (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2014).

2.

International Materials Flows and Useful resource Productiveness (United Nations Surroundings Programme, 2016).

three.

Coverage Coherence of the Sustainable Growth Targets, a Pure Assets Perspective (United Nations Surroundings Programme, 2015).

four.

Stern, N. The economics of local weather change. Am. Econ. Rev. 98, 1–37 (2008).

5.

Foxon, T. J. Transition pathways for a UK low carbon electrical energy future. Power Coverage 52, 10–24 (2013).

6.

Hertwich, E. G. et al. Built-in life-cycle evaluation of electricity-supply eventualities confirms world environmental advantage of low-carbon applied sciences. Proc. Natl Acad. Sci. USA 112, 6277–6282 (2015).

7.

McCollum, D. L. et al. Connecting the sustainable growth targets by their vitality inter-linkages. Environ. Res. Lett. 13, 033006 (2018).

eight.

Liu, J. et al. Programs integration for world sustainability. Science 347, 1258832 (2015).

9.

Hoekstra, A. Y. & Wiedmann, T. O. Humanity’s unsustainable environmental footprint. Science 344, 1114–1117 (2014).

10.

Plevin, R. J., Delucchi, M. A. & Creutzig, F. Utilizing attributional life cycle evaluation to estimate climate-change mitigation advantages misleads coverage makers. J. Ind. Ecol. 18, 73–83 (2014).

11.

Fischer-Kowalski, M. & Weisz, H. Society as hybrid between materials and symbolic realms. Adv. Hum. Ecol. eight, 215–251 (1999).

12.

González de Molina, M. & Toledo, V. M. The Social Metabolism: A Socio-Ecological Concept of Historic Change (Springer, Cham, 2014).

13.

Weisz, H. The chance of the unbelievable: society–nature coevolution. Geogr. Ann. Ser. B 93, 325–336 (2011).

14.

Weisz, H., Suh, S. & Graedel, T. E. Industrial ecology: the function of manufactured capital in sustainability. Proc. Natl Acad. Sci. USA 112, 6260–6264 (2015).

15.

Krausmann, F. et al. International socioeconomic materials shares rise 23-fold over the 20th century and require half of annual useful resource use. Proc. Natl Acad. Sci. USA 114, 1880–1885 (2017).

16.

Pauliuk, S. & Müller, D. B. The function of in-use shares within the social metabolism and in local weather change mitigation. Glob. Environ. Change 24, 132–142 (2014).

17.

Haberl, H., Wiedenhofer, D., Erb, Okay.-H., Görg, C. & Krausmann, F. The fabric inventory–circulation–service nexus: a brand new method for tackling the decoupling conundrum. Sustainability 9, 1049 (2017).

18.

Pauliuk, S. & Hertwich, E. G. Socioeconomic metabolism as paradigm for learning the biophysical foundation of human societies. Ecol. Econ. 119, 83–93 (2015).

19.

Lejano, R. P. & Stokols, D. Social ecology, sustainability, and economics. Ecol. Econ. 89, 1–6 (2013).

20.

Goodland, R. & Daly, H. Environmental sustainability: common and non-negotiable. Ecol. Appl. 6, 1002–1017 (1996).

21.

Daly, H. E. Economics in a full world. Sci. Am. 293, 78–85 (2005).

22.

Fischer-Kowalski, M. et al. Methodology and indicators of economy-wide materials circulation accounting — cutting-edge and reliability throughout sources. J. Ind. Ecol. 15, 855–876 (2011).

23.

Fischer-Kowalski, M. Society’s metabolism: the mental historical past of supplies circulation evaluation, half I, 1860–1970. J. Ind. Ecol. 2, 107–136 (1998).

24.

Christensen, P. Classical roots for a contemporary materials-energy evaluation. Ecol. Modell. 38, 75–89 (1987).

25.

Cleveland, C. J. Biophysical economics: historic perspective and present analysis tendencies. Ecol. Modell. 38, 47–73 (1987).

26.

Martinez-Alier, J. Ecological Economics: Power, Surroundings and Society (Blackwell, Oxford, UK, Cambridge, USA, 1987).

27.

Dunlap, R. E. & Catton, W. R. Battling human exemptionalism: the rise, decline and revitalization of environmental sociology. Am. Sociol. 25, 5–30 (1994).

28.

Røpke, I. Developments within the growth of ecological economics from the late 1980s to the early 2000s. Ecol. Econ. 55, 262–290 (2005).

29.

Martinez-Alier, J., Munda, G. & O’Neill, J. in The Economics of Nature and the Nature of Economics (eds Cleveland, C. J., Stern, D. I. & Costanza, R.) 34–56 (Edward Elgar, Cheltenham, UK, Northhampton, MA, 2001).

30.

Varela, F. G., Maturana, H. R. & Uribe, R. Autopoiesis: the group of residing programs, its characterization and a mannequin. Biosystems 5, 187–196 (1974).

31.

Ulanowicz, R. E. Ecology, the Ascendent Perspective (Columbia Univ. Press, New York, 1997).

32.

Holling, C. S. Resilience and stability of ecological programs. Annu. Rev. Ecol. Evol. Syst. four, 1–23 (1973).

33.

Bringezu, S., Fischer-Kowalski, M., Kleijn, R. & Palm, V. (eds) In Proc. ConAccount Workshop 21–23 January 1997, Leiden (Wuppertal Institute, Wuppertal, 1997).

34.

Amate, J., Molina, M. Gde & Toledo, V. M. El metabolismo social. Historias, métodos y principales aportaciones. Revista Iberoamericana Econ. Ecol. 27, 30–152 (2017).

35.

Wolman, A. The metabolism of cities. Sci. Am. 213, 179–190 (1965).

36.

Boyden, S., Millar, S., Newcombe, Okay. & O’Neill, B. Ecology of a Metropolis and its Individuals: The Case of Hong Kong (Austrian Nationwide Univ., Canberra, 1981).

37.

von Thünen, J. H. Der isolierte Staat in Beziehung auf Landwirtschaft und Nationalökonomie (Historisches Wirtschaftsarchiv, Paderborn, 2013).

38.

Kennedy, C. A. et al. Power and materials flows of megacities. Proc. Natl Acad. Sci. USA 112, 5985–5990 (2015).

39.

Lenzen, M. & Peters, G. M. How metropolis dwellers have an effect on their useful resource hinterland. J. Ind. Ecol. 14, 73–90 (2010).

40.

Schäffler, A. & Swilling, M. Valuing inexperienced infrastructure in an city setting underneath strain — the Johannesburg case. Ecol. Econ. 86, 246–257 (2013).

41.

Ramaswami, A., Russell, A. G., Culligan, P. J., Sharma, Okay. R. & Kumar, E. Meta-principles for growing sensible, sustainable, and wholesome cities. Science 352, 940–943 (2016).

42.

Athanassiadis, A. et al. Evaluating a territorial-based and a consumption-based method to evaluate the native and world environmental efficiency of cities. J. Clear. Prod. 173, 112–123 (2018).

43.

Kennedy, C., Pincetl, S. & Bunje, P. The examine of city metabolism and its purposes to city planning and design. Environ. Pollut. 159, 1965–1973 (2011).

44.

Zhang, Y., Yang, Z. & Yu, X. City metabolism: a evaluate of present information and instructions for future examine. Environ. Sci. Technol. 49, 11247–11263 (2015).

45.

Gandy, M. Rethinking city metabolism: water, area and the fashionable metropolis. Metropolis eight, 363–379 (2004).

46.

Newell, J. P. & Cousins, J. J. The boundaries of city metabolism: in direction of a political-industrial ecology. Prog. Hum. Geogr. 39, 702–728 (2015).

47.

Beloin-Saint-Pierre, D. et al. A evaluate of city metabolism research to establish key methodological selections for future harmonization and implementation. J. Clear. Prod. 163, S223–S240 (2017).

48.

Georgescu-Roegen, N. The Entropy Legislation and the Financial Course of (Harvard Univ. Press, Cambridge, USA, 1971).

49.

Giampietro, M., Mayumi, Okay. & Sorman, A. H. The Metabolic Sample of Societies: The place Economists Fall Quick (Routledge, London, 2012).

50.

Gerber, J.-F. & Scheidel, A. Seeking substantive economics: evaluating at present’s two main socio-metabolic approaches to the economic system — MEFA and MuSIASEM. Ecol. Econ. 144, 186–194 (2018).

51.

Giampietro, M., Mayumi, Okay. & Ramos-Martin, J. Multi-scale built-in evaluation of societal and ecosystem metabolism (MuSIASEM): theoretical ideas and primary rationale. Power 34, 313–322 (2009).

52.

Ravera, F. et al. Pathways of rural change: an built-in evaluation of metabolic patterns in rising ruralities. Environ. Dev. Maintain. 16, 811–820 (2014).

53.

Silva-Macher, J. C. A metabolic profile of Peru: an utility of multi-scale built-in evaluation of societal and ecosystem metabolism (MuSIASEM) to the mining sector’s exosomatic vitality flows. J. Ind. Ecol. 20, 1072–1082 (2016).

54.

Chifari, R., Lo Piano, S., Bukkens, S. G. F. & Giampietro, M. A holistic framework for the built-in evaluation of city waste administration programs. Ecol. Indic. 94, 24–36 (2016).

55.

Giampietro, M., Aspinall, R. J., Ramos-Martin, J. & Bukkens, S. G. F. Useful resource Accounting for Sustainability Evaluation: The Nexus between Power, Meals, Water and Land Use (Routledge, London, 2014).

56.

Lomas, P. L. & Giampietro, M. Environmental accounting for ecosystem conservation: linking societal and ecosystem metabolisms. Ecol. Modell. 346, 10–19 (2017).

57.

Boulding, Okay. in Regular State Economics (ed. Daly, H. E.) 121–132 (W. H. Freeman, San Francisco, 1972).

58.

Ayres, R. U. & Kneese, A. V. Manufacturing, consumption, and externalities. Am. Econ. Rev. 59, 282–297 (1969).

59.

Odum, H. T. Surroundings, Energy and Society (Wiley-Interscience, New York, 1971).

60.

Dale, M., Krumdieck, S. & Bodger, P. International vitality modelling — a biophysical method (GEMBA) half 1: an outline of biophysical economics. Ecol. Econ. 73, 152–157 (2012).

61.

Cleveland, C. J., Costanza, R., Corridor, C. A. S. & Kaufmann, R. Power and the US economic system: a biophysical perspective. Science 225, 890–897 (1984).

62.

Lambert, J. G., Corridor, C. A. S., Balogh, S., Gupta, A. & Arnold, M. Power, EROI and high quality of life. Power Coverage 64, 153–167 (2014).

63.

Gupta, A. Okay. & Corridor, C. A. S. A evaluate of the previous and present state of EROI information. Sustainability three, 1796–1809 (2011).

64.

Corridor, C. A. S. & Klitgaard, Okay. A. Power and the Wealth of Nations: An Introduction to Biophysical Economics (Springer, New York, 2017).

65.

Kümmel, R. The Second Legislation of Economics, Power, Entropy and the Origins of Wealth (Springer, New York, 2011).

66.

Corridor, C., Lindenberger, D., Kümmel, R., Kroeger, T. & Eichhorn, W. The necessity to reintegrate the pure sciences with economics. BioScience 51, 663–673 (2001).

67.

Corridor, C. A. S., Balogh, S. & Murphy, D. J. R. What’s the minimal EROI that a sustainable society will need to have? Energies 2, 25–47 (2009).

68.

King, L. C. & van den Bergh, J. C. J. M. Implications of web energy-return-on-investment for a low-carbon vitality transition. Nat. Power three, 334–340 (2018).

69.

Odum, H. T. Environmental Accounting, EMERGY and Environmental Determination Making (Wiley, Chichester, 1996).

70.

Geng, Y., Sarkis, J., Ulgiati, S. & Zhang, P. Measuring China’s round economic system. Science 339, 1526–1527 (2013).

71.

Yang, Z. F. et al. Photo voltaic vitality analysis for Chinese language economic system. Power Coverage 38, 875–886 (2010).

72.

Ayres, R. U., Ayres, L. W. & Warr, B. Exergy, energy and work within the US economic system, 1900–1998. Power 28, 219–273 (2003).

73.

Sousa, T. et al. The necessity for strong, constant strategies in societal exergy accounting. Ecol. Econ. 141, 11–21 (2017).

74.

Romero, J. C. & Linares, P. Exergy as a worldwide vitality sustainability indicator. A evaluate of the cutting-edge. Renew. Maintain. Power Rev. 33, 427–442 (2014).

75.

Ayres, R. U. & Ayres, L. W. Accounting for Assets, 1: Financial system-Large Functions of Mass-Stability Ideas to Supplies and Waste (Edward Elgar, Cheltenham, UK, Northhampton, MA, 1998).

76.

Baccini, P. & Brunner, P. H. Metabolism of the Anthroposphere (Springer-Verlag, Berlin, 1991).

77.

Moriguchi, Y. Materials circulation indicators to measure progress towards a sound material-cycle society. J. Mater. Cycles Waste Manag. 9, 112–120 (2007).

78.

Baccini, P. & Bader, H.-P. Regionaler Stoffhaushalt (Spektrum Akademischer Verlag, Heidelberg, 1986).

79.

Krausmann, F., Schandl, H., Eisenmenger, N., Giljum, S. & Jackson, T. Materials circulation accounting: measuring world materials use for sustainable growth. Annu. Rev. Environ. Resour. 42, 647–675 (2017).

80.

Giljum, S., Dittrich, M., Lieber, M. & Lutter, S. International patterns of fabric flows and their socio-economic and environmental implications: a MFA examine on all nations world-wide from 1980 to 2009. Assets three, 319–339 (2014).

81.

Dong, L. et al. Materials flows and useful resource productiveness in China, South Korea and Japan from 1970 to 2008: a transitional perspective. J. Clear. Prod. 141, 1164–1177 (2017).

82.

Steinberger, J. Okay., Krausmann, F., Getzner, M., Schandl, H. & West, J. Growth and dematerialization: a global examine. PLoS ONE eight, e70385 (2013).

83.

Chen, M. & Graedel, T. E. A half-century of worldwide phosphorus flows, shares, manufacturing, consumption, recycling, and environmental impacts. Glob. Environ. Change 36, 139–152 (2016).

84.

Huang, C.-L., Vause, J., Ma, H.-W. & Yu, C.-P. Utilizing materials/substance circulation evaluation to assist sustainable growth evaluation: a literature evaluate and outlook. Resour. Conserv. Recycl. 68, 104–116 (2012).

85.

Leontief, W. Environmental repercussions and the financial construction: an enter–output method. Rev. Econ. Stat. 52, 262–271 (1970).

86.

Daly, H. E. On economics as a life science. J. Polit. Econ. 76, 392–406 (1968).

87.

Tukker, A. et al. In the direction of strong, authoritative assessments of environmental impacts embodied in commerce: present state and proposals. J. Ind. Ecol. 22, 585–598 (2018).

88.

Malik, A., McBain, D., Wiedmann, T. O., Lenzen, M. & Murray, J. Developments in enter–output fashions and indicators for consumption-based accounting: MRIO fashions for consumption-based accounting. J. Ind. Ecol. https://doi.org/10.1111/jiec.12771 (2018).

89.

Bullard, I. & Herendeen, R. A. The vitality value of products and providers. Power Coverage three, 268–278 (1975).

90.

Bullard, C. W., Penner, P. S. & Pilati, D. A. Web vitality evaluation: handbook for combining course of and enter–output evaluation. Resour. Power 1, 267–313 (1978).

91.

Wooden, R., Stadler, Okay., Bulavskaya, T., Giljum, S. & Lutter, S. Progress in environmental footprints and environmental impacts embodied in commerce: useful resource effectivity indicators from EXIOBASE3. J. Ind. Ecol. 22, 553–564 (2018).

92.

Plank, B., Eisenmenger, N., Schaffartzik, A. & Wiedenhofer, D. Worldwide commerce drives world useful resource use: a structural decomposition evaluation of uncooked materials consumption from 1990–2010. Environ. Sci. Technol. 52, 4190–4198 (2018).

93.

Meng, J. et al. The rise of south–south commerce and its impact on world CO2 emissions. Nat. Commun. 9, 1871 (2018).

94.

Wiedmann, T. & Lenzen, M. Environmental and social footprints of worldwide commerce. Nat. Geosci. 11, 314–321 (2018).

95.

Wackernagel, M. et al. Monitoring the ecological overshoot of the human economic system. Proc. Natl Acad. Sci. USA 99, 9266–9271 (2002).

96.

Guinée, J. B. & Heijungs, R. In Kirk-Othmer Encyclopedia of Chemical Expertise https://doi.org/10.1002/0471238961.lifeguin.a01 (Wiley, 2015).

97.

Hellweg, S. & Canals, L. Mi Rising approaches, challenges and alternatives in life cycle evaluation. Science 344, 1109–1113 (2014).

98.

Zamagni, A., Guinée, J., Heijungs, R., Masoni, P. & Raggi, A. Lights and shadows in consequential LCA. Int. J. Life Cycle Assess. 17, 904–918 (2012).

99.

Earles, J. M. & Halog, A. Consequential life cycle evaluation: a evaluate. Int. J. Life Cycle Assess. 16, 445–453 (2011).

100.

Pauliuk, S., Arvesen, A., Stadler, Okay. & Hertwich, E. G. Industrial ecology in built-in evaluation fashions. Nat. Clim. Change 7, 13–20 (2017).

101.

Crutzen, P. J. Geology of mankind. Nature 415, 23–23 (2002).

102.

Steffen, W. et al. Planetary boundaries: guiding human growth on a altering planet. Science 347, 1259855–1259855 (2015).

103.

IPCC Local weather Change 2013: The Bodily Science Foundation (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

104.

Johnson, C. N. et al. Biodiversity losses and conservation responses within the Anthropocene. Science 356, 270–275 (2017).

105.

Lenton, T. M., Pichler, P.-P. & Weisz, H. Revolutions in vitality enter and materials biking in Earth historical past and human historical past. Earth Syst. Dyn. 7, 353–370 (2016).

106.

Schandl, H. et al. International materials flows and useful resource productiveness: forty years of proof. J. Ind. Ecol. 22, 827–838 (2017).

107.

Ehrlich, P. R. The Inhabitants Bomb: Inhabitants Management or Race to Oblivion? (Sierra Membership, Ballantine Books, New York, 1968).

108.

York, R., Rosa, E. A. & Dietz, T. STIRPAT, IPAT and ImPACT: analytic instruments for unpacking the driving forces of environmental impacts. Ecol. Econ. 46, 351–365 (2003).

109.

Moran, D. D., Wackernagel, M., Kitzes, J. A., Goldfinger, S. H. & Boutaud, A. Measuring sustainable growth — nation by nation. Ecol. Econ. 64, 470–474 (2008).

110.

Steinberger, J. Okay., Timmons Roberts, J., Peters, G. P. & Baiocchi, G. Pathways of human growth and carbon emissions embodied in commerce. Nat. Clim. Change 2, 81–85 (2012).

111.

Dietz, T., Rosa, E. A. & York, R. Environmentally environment friendly well-being: Is there a Kuznets curve? Appl. Geogr. 32, 21–28 (2012).

112.

Ayres, R. U. & Warr, B. The Financial Progress Engine: How Power And Work Drive Materials Prosperity (Edward Elgar, Cheltenham, UK, Northhampton, MA, 2009).

113.

Warr, B. & Ayres, R. U. Helpful work and knowledge as drivers of financial progress. Ecol. Econ. 73, 93–102 (2012).

114.

Zhang, C., Chen, W.-Q. & Ruth, M. Measuring materials effectivity: a evaluate of the historic evolution of indicators, methodologies and findings. Resour. Conserv. Recycl. 132, 79–92 (2018).

115.

Decoupling Pure Useful resource Use And Environmental Impacts From Financial Progress (United Nations Surroundings Programme, 2011).

116.

Pothen, F. & Schymura, M. Greater muffins with fewer components? A comparability of fabric use of the world economic system. Ecol. Econ. 109, 109–121 (2015).

117.

Shao, Q., Schaffartzik, A., Mayer, A. & Krausmann, F. The excessive ‘worth’ of dematerialization: a dynamic panel information evaluation of fabric use and financial recession. J. Clear. Prod. 167, 120–132 (2017).

118.

Costanza, R. et al. Growth: time to go away GDP behind. Nature 505, 283–285 (2014).

119.

Bringezu, S. et al. Multi-scale governance of sustainable pure useful resource use — challenges and alternatives for monitoring and institutional growth on the nationwide and world stage. Sustainability eight, 778 (2016).

120.

Krausmann, F., Fischer‐Kowalski, M., Schandl, H. & Eisenmenger, N. The worldwide sociometabolic transition. J. Ind. Ecol. 12, 637–656 (2008).

121.

Steinberger, J. Okay., Krausmann, F. & Eisenmenger, N. International patterns of supplies use: a socioeconomic and geophysical evaluation. Ecol. Econ. 69, 1148–1158 (2010).

122.

Wiedmann, T. O. et al. The fabric footprint of countries. Proc. Natl Acad. Sci. USA 112, 6271–6276 (2015).

123.

Muradian, R., Walter, M. & Martinez-Alier, J. International transformations, social metabolism and the dynamics of socio-environmental conflicts. Glob. Environ. Change 22(Spec. Problem), 559–794 (2012).

124.

Simas, M., Pauliuk, S., Wooden, R., Hertwich, E. G. & Stadler, Okay. Correlation between manufacturing and consumption-based environmental indicators. Ecol. Indic. 76, 317–323 (2017).

125.

Steinberger, J. Okay. & Krausmann, F. Materials and vitality productiveness. Environ. Sci. Technol. 45, 1169–1176 (2011).

126.

Görg, C. et al. Challenges for social-ecological transformations: contributions from social and political ecology. Sustainability 9, 1045 (2017).

127.

O’Neill, D. W., Fanning, A. L., Lamb, W. F. & Steinberger, J. Okay. life for all inside planetary boundaries. Nat. Maintain. 1, 88–95 (2018).

128.

Bringezu, S. Potential goal hall for sustainable use of worldwide materials assets. Assets four, 25–54 (2015).

129.

Ghisellini, P., Cialani, C. & Ulgiati, S. A evaluate on round economic system: the anticipated transition to a balanced interaction of environmental and financial programs. J. Clear. Prod. 114, 11–32 (2016).

130.

McDowall, W. et al. Round economic system insurance policies in china and europe: round economic system insurance policies in China and Europe. J. Ind. Ecol. 21, 651–661 (2017).

131.

Björklund, A. & Finnveden, G. Recycling revisited — life cycle comparisons of worldwide warming influence and complete vitality use of waste administration methods. Resour. Conserv. Recycl. 44, 309–317 (2005).

132.

Reck, B. Okay. & Graedel, T. E. Challenges in metallic recycling. Science 337, 690–695 (2012).

133.

Graedel, T. E., Harper, E. M., Nassar, N. T. & Reck, B. Okay. On the supplies foundation of contemporary society. Proc. Natl Acad. Sci. USA 112, 6295–6300 (2015).

134.

Ciacci, L., Reck, B. Okay., Nassar, N. T. & Graedel, T. E. Misplaced by design. Environ. Sci. Technol. 49, 9443–9451 (2015).

135.

Pauliuk, S., Milford, R. L., Müller, D. B. & Allwood, J. M. The metal scrap age. Environ. Sci. Technol. 47, 3448–3454 (2013).

136.

Wang, P., Li, W. & Kara, S. Dynamic life cycle quantification of metallic components and their circularity, effectivity, and leakages. J. Clear. Prod. 174, 1492–1502 (2018).

137.

Graedel, T. E. et al. What can we find out about metallic recycling charges? J. Ind. Ecol. 15, 355–366 (2011).

138.

Haas, W., Krausmann, F., Wiedenhofer, D. & Heinz, M. How round is the worldwide economic system? An evaluation of fabric flows, waste manufacturing, and recycling within the European Union and the world in 2005. J. Ind. Ecol. 19, 765–777 (2015).

139.

Pauliuk, S. Important appraisal of the round economic system customary BS 8001:2017 and a dashboard of quantitative system indicators for its implementation in organizations. Resour. Conserv. Recycl. 129, 81–92 (2018).

140.

Mayer, A., Haas, W. & Wiedenhofer, D. How nations’ useful resource use historical past issues for human well-being — an investigation of worldwide patterns in cumulative materials flows from 1950 to 2010. Ecol. Econ. 134, 1–10 (2017).

141.

Porter, M., Stern, S. & Inexperienced, M. Social Progress Index 2017 (Social Progress Crucial, 2017).

142.

Costa, L., Rybski, D. & Kropp, J. P. A human growth framework for CO2 reductions. PLoS ONE 6, e29262 (2011).

143.

Lamb, W. F. et al. Transitions in pathways of human growth and carbon emissions. Environ. Res. Lett. 9, 014011 (2014).

144.

Dearing, J. A. et al. Protected and simply working areas for regional social-ecological programs. Glob. Environ. Change 28, 227–238 (2014).

145.

Measuring Materials Flows and Useful resource Productiveness. Quantity I. The OECD Information (Organisation for Financial Co-Operation and Growth, 2008).

146.

Liao, W., Heijungs, R. & Huppes, G. Thermodynamic evaluation of human–setting programs: a evaluate targeted on industrial ecology. Ecol. Modell. 228, 76–88 (2012).

147.

Liu, G., Bangs, C. E. & Müller, D. B. Inventory dynamics and emission pathways of the worldwide aluminium cycle. Nat. Clim. Change three, 338–342 (2012).

148.

Sandberg, N. H. et al. Dynamic constructing inventory modelling: utility to 11 European nations to assist the vitality effectivity and retrofit ambitions of the EU. Power Construct. 132, 26–38 (2016).

149.

Hertwich, E. G. & Peters, G. P. Carbon footprint of countries: a worldwide, trade-linked evaluation. Environ. Sci. Technol. 43, 6414–6420 (2009).

150.

Peters, G. P., Minx, J. C., Weber, C. L. & Edenhofer, O. Progress in emission transfers by way of worldwide commerce from 1990 to 2008. Proc. Natl Acad. Sci. USA 108, 8903–8908 (2011).

151.

Davis, S. J., Caldeira, Okay. & Matthews, H. D. Future CO2 emissions and local weather change from current vitality infrastructure. Science 329, 1330–1333 (2010).

152.

Raupach, M. R. et al. Sharing a quota on cumulative carbon emissions. Nat. Clim. Change four, 873–879 (2014).

153.

Seto, Okay. C., Golden, J. S., Alberti, M. & Turner, B. L. Sustainability in an urbanizing planet. Proc. Natl Acad. Sci. USA 114, 8935–8938 (2017).

154.

Bretschger, L. & Smulders, S. Challenges for a sustainable useful resource use: uncertainty, commerce, and local weather insurance policies. J. Environ. Econ. Manag. 64, 279–287 (2012).

155.

Laner, D., Rechberger, H. & Astrup, T. Systematic analysis of uncertainty in materials circulation evaluation. J. Ind. Ecol. 18, 859–870 (2014).

156.

Hertwich, E. G. Consumption and the rebound impact: an industrial ecology perspective. J. Ind. Ecol. 9, 85–98 (2005).

157.

Ayres, R. U. & Simonis, U. E. Industrial Metabolism: Restructuring for Sustainable Growth (United Nations Univ. Press, Tokyo, 1994).

158.

Chertow, M., Lifset, R. & Yang, T. In Oxford Bibliographies in Ecology https://doi.org/10.1093/obo/9780199830060-0200 (2018).

159.

Erb, Okay.-H. How a socio-ecological metabolism method will help to advance our understanding of modifications in land-use depth. Ecol. Econ. 76, eight–14 (2012).

160.

Turner, B. L., Lambin, E. F. & Reenberg, A. The emergence of land change science for world environmental change and sustainability. Proc. Natl Acad. Sci. USA 104, 20666–20671 (2007).

161.

Allwood, J. M., Ashby, M. F., Gutowski, T. G. & Worrell, E. Materials effectivity: a white paper. Resour. Conserv. Recycl. 55, 362–381 (2011).

162.

Schandl, H. et al. Decoupling world environmental strain and financial progress: eventualities for vitality use, supplies use and carbon emissions. J. Clear. Prod. 132, 45–56 (2016).

163.

Duro, J. A., Schaffartzik, A. & Krausmann, F. Metabolic inequality and its influence on environment friendly contraction and convergence of worldwide materials useful resource use. Ecol. Econ. 145, 430–440 (2018).

164.

Pichler, M., Schaffartzik, A., Haberl, H. & Görg, C. Drivers of society–nature relations within the Anthropocene and their implications for sustainability transformations. Curr. Opin. Environ. Maintain. 26–27, 32–36 (2017).

165.

López, L. A., Arce, G., Morenate, M. & Zafrilla, J. E. How does revenue redistribution have an effect on households’ materials footprint? J. Clear. Prod. 153, 515–527 (2017).

166.

Ahmed, N. M. Failing States, Collapsing Programs: Biophysical Triggers of Political Violence (Springer Nature, Cham, 2017).

167.

Martinez-Alier, J. The Environmentalism of the Poor: A Research of Ecological Conflicts and Valuation (Edward Elgar, Cheltenham, UK, Northhampton, MA, 2002).

168.

Pérez-Rincón, M., Vargas-Morales, J. & Crespo-Marín, Z. Developments in social metabolism and environmental conflicts in 4 Andean nations from 1970 to 2013. Maintain. Sci. 13, 635–648 (2018).

169.

Simas, M., Goldsteijn, L., Huijbregts, Ma. J., Wooden, R. & Hertwich, E. The “unhealthy labor” footprint: quantifying the social impacts of globalization. Sustainability 6, 7514–7540 (2014).

170.

Simas, M., Wooden, R. & Hertwich, E. Labor embodied in commerce. J. Ind. Ecol. 19, 343–356 (2015).

171.

Giljum, S. & Eisenmenger, N. North–south commerce and the distribution of environmental items and burdens: a biophysical perspective. J. Environ. Dev. 13, 73–100 (2004).

172.

Hornborg, A. & Jorgensen, A. Okay. Worldwide Commerce and Environmental Justice: Towards a International Political Ecology (Nova Science, Hauppauge, 2010).

173.

Hornborg, A. & Martinez-Alier, J. Ecologically unequal alternate and ecological debt. J. Polit. Ecol. 23, 328–333 (2016).

174.

Rotmans, J. & Fischer-Kowalski, M. Conceptualizing, observing and influencing socio-ecological transitions. Ecol. Soc. 14, three (2009).

175.

Geels, F. W., Schwanen, T., Sorrell, S., Jenkins, Okay. & Sovacool, B. Okay. Decreasing vitality demand via low carbon innovation: a sociotechnical transitions perspective and 13 analysis debates. Power Res. Soc. Sci. 40, 23–35 (2018).

176.

Haberl, H., Fischer-Kowalski, M., Krausmann, F., Martinez-Alier, J. & Winiwarter, V. A socio-metabolic transition in direction of sustainability? Challenges for one more nice transformation. Maintain. Dev. 19, 1–14 (2011).

177.

Fischer-Kowalski, M. & Hüttler, W. Society’s metabolism: the mental historical past of supplies circulation evaluation, half II, 1970–1998. J. Ind. Ecol. 2, 107–136 (1998).

178.

Shiklomanov, I. A. Appraisal and evaluation of world water assets. Water Int. 25, 11–32 (2000).

179.

Krausmann, F. et al. Progress in world supplies use, GDP and inhabitants throughout the 20th century. Ecol. Econ. 68, 2696–2705 (2009).

180.

Krausmann, F., Lauk, C., Haas, W. & Wiedenhofer, D. From useful resource extraction to outflows of wastes and emissions: the socioeconomic metabolism of the worldwide economic system, 1900–2015. Glob. Environ. Change 52, 131–140 (2018).

181.

Riley, J. C. Estimates of regional and world life expectancy, 1800–2001. Popul. Dev. Rev. 31, 537–543 (2005).

182.

World Growth Indicators (The World Financial institution, accessed 22 August 2017); http://information.worldbank.org/data-catalog/world-development-indicators

183.

Bolt, J. & van Zanden, J. L. The Maddison Challenge: collaborative analysis on historic nationwide accounts. Econ. Historical past Rev. 67, 627–651 (2014).

184.

De Stercke, S. Dynamics of Power Programs: A Helpful Perspective IIASA Interim Report No. IR-14-013 (Worldwide Institute for Utilized Programs Evaluation, 2014).

185.

Marland, G., Boden, T. A. & Andres, R. J. International, Regional, and Nationwide Fossil-Gasoline CO
2Emissions (Carbon Dioxide Data Evaluation Middle, Environmental Sciences Division, Oak Ridge Nationwide Laboratory, 2016).

186.

Cao, Z., Shen, L., Løvik, A. N., Müller, D. B. & Liu, G. Elaborating the historical past of our cementing societies: an in-use inventory perspective. Environ. Sci. Technol. 51, 11468–11475 (2017).


Supply hyperlink
asubhan

wordpress autoblog

amazon autoblog

affiliate autoblog

wordpress web site

web site growth

Show More

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Close