Crystal construction of a mammalian Wnt–frizzled advanced


Logan, C. Y. & Nusse, R. The Wnt signaling pathway in improvement and illness. Annu. Rev. Cell Dev. Biol. 20, 781–810 (2004).


MacDonald, B. T. & He, X. Frizzled and LRP5/6 receptors for Wnt/β-catenin signaling. Chilly Spring Harb. Perspect. Biol. four, a007880 (2012).


Takada, R. et al. Monounsaturated fatty acid modification of Wnt protein: its position in Wnt secretion. Dev. Cell 11, 791–801 (2006).


Willert, Okay. et al. Wnt proteins are lipid-modified and might act as stem cell development components. Nature 423, 448–452 (2003).


Janda, C. Y., Waghray, D., Levin, A. M., Thomas, C. & Garcia, Okay. C. Structural foundation of Wnt recognition by Frizzled. Science 337, 59–64 (2012).


Chu, M. L. et al. Structural research of Wnts and identification of an LRP6 binding web site. Construction 21, 1235–1242 (2013).


Clevers, H. Wnt/β-catenin signaling in improvement and illness. Cell 127, 469–480 (2006).


Nile, A. H., Mukund, S., Stanger, Okay., Wang, W. & Hannoush, R. N. Unsaturated fatty acyl recognition by Frizzled receptors mediates dimerization upon Wnt ligand binding. Proc. Natl Acad. Sci. USA 114, 4147–4152 (2017).


Dann, C. E. et al. Insights into Wnt binding and signalling from the buildings of two Frizzled cysteine-rich domains. Nature 412, 86–90 (2001).


Voss, N. R. & Gerstein, M. 3V: cavity, channel and cleft quantity calculator and extractor. Nucleic Acids Res. 38, W555–W562 (2010).


Fujii, Y. et al. Tailor-made placement of a turn-forming PA tag into the structured area of a protein to probe its conformational state. J. Cell Sci. 129, 1512–1522 (2016).


Farin, H. F. et al. Visualization of a short-range Wnt gradient within the intestinal stem-cell area of interest. Nature 530, 340–343 (2016).


Mihara, E. et al. Lively and water-soluble type of lipidated wnt protein is maintained by a serum glycoprotein afamin/α-albumin. eLife 5, e11621 (2016).


Eubelen, M. et al. A molecular mechanism for Wnt ligand-specific signaling. Science 361, eaat1178 (2018).


Bourhis, E. et al. Reconstitution of a Frizzled8.Wnt3a.LRP6 signaling advanced reveals a number of Wnt and Dkk1 binding websites on LRP6. J. Biol. Chem. 285, 9172–9179 (2010).


Zhang, X. et al. Tiki1 is required for head formation through Wnt cleavage-oxidation and inactivation. Cell 149, 1565–1577 (2012).


Buchan, D. W., Minneci, F., Nugent, T. C., Bryson, Okay. & Jones, D. T. Scalable internet companies for the PSIPRED Protein Evaluation Workbench. Nucleic Acids Res. 41, W349–W357 (2013).


Chen, S. et al. Structural and practical research of LRP6 ectodomain reveal a platform for Wnt signaling. Dev. Cell 21, 848–861 (2011).


Zong, Y. et al. Structural foundation of agrin-LRP4-MuSK signaling. Genes Dev. 26, 247–258 (2012).


Bourhis, E. et al. Wnt antagonists bind via a brief peptide to the primary β-propeller area of LRP5/6. Construction 19, 1433–1442 (2011).


Takagi, J., Yang, Y., Liu, J.-H., Wang, J.-H. & Springer, T. A. Advanced between nidogen and laminin fragments reveals a paradigmatic β-propeller interface. Nature 424, 969–974 (2003).


Matoba, Okay. et al. Conformational freedom of the LRP6 ectodomain is regulated by N-glycosylation and the binding of the Wnt antagonist Dkk1. Cell Rep. 18, 32–40 (2017).


Yang, S. et al. Crystal construction of the Frizzled four receptor in a ligand-free state. Nature 560, 666–670 (2018).


Chang, T. H. et al. Construction and practical properties of Norrin mimic Wnt for signalling with Frizzled4, Lrp5/6, and proteoglycan. eLife four, e06554 (2015).


Janda, C. Y. et al. Surrogate Wnt agonists that phenocopy canonical Wnt and β-catenin signalling. Nature 545, 234–237 (2017).


Gammons, M. & Bienz, M. Multiprotein complexes governing Wnt sign transduction. Curr. Opin. Cell Biol. 51, 42–49 (2018).


Novarra, S. et al. A hingeless Fc fusion system for site-specific cleavage by IdeS. MAbs eight, 1118–1125 (2016).


von Pawel-Rammingen, U., Johansson, B. P. & Bjorck, L. IdeS, a novel streptococcal cysteine proteinase with distinctive specificity for immunoglobulin G. EMBO J. 21, 1607–1615 (2002).


Walter, T. S. et al. Lysine methylation as a routine rescue technique for protein crystallization. Construction 14, 1617–1622 (2006).


Wilkins, M. R. et al. Protein identification and evaluation instruments within the ExPASy server. Strategies Mol. Biol. 112, 531–552 (1999).


Otwinowski, Z. & Minor, W. Processing of X-ray diffraction knowledge collected in oscillation mode. Meth. Enzymol. 276, 307–326 (1997).


Mccoy, A. J. et al. Phaser crystallographic software program. J. Appl. Cryst. 40, 658–674 (2007).


Winn, M. D., Isupov, M. N. & Murshudov, G. N. Use of TLS parameters to mannequin anisotropic displacements in macromolecular refinement. Acta Crystallogr. D 57, 122–133 (2001).


Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, Okay. Options and improvement of Coot. Acta Crystallogr. D 66, 486–501 (2010).


Adams, P. D. et al. PHENIX: a complete Python-based system for macromolecular construction answer. Acta Crystallogr. D 66, 213–221 (2010).


Chen, V. B. et al. MolProbity: all-atom construction validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).


Tabata, S. et al. A speedy screening methodology for cell traces producing singly-tagged recombinant proteins utilizing the “TARGET tag” system. J. Proteomics 73, 1777–1785 (2010).

Supply hyperlink

wordpress autoblog

amazon autoblog

affiliate autoblog

wordpress web site

web site improvement

Show More

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *