Chemistry

De novo protein design by citizen scientists


1.

Lintott, C. J. et al. Galaxy Zoo: morphologies derived from visible inspection of galaxies from the Sloan Digital Sky Survey. Mon. Not. R. Astron. Soc. 389, 1179–1189 (2008).

2.

Kim, J. S. et al. Area-time wiring specificity helps route selectivity within the retina. Nature 509, 331–336 (2014).

three.

Kawrykow, A. et al. Phylo: a citizen science method for bettering a number of sequence alignment. PLoS ONE 7, e31362 (2012).

four.

Lee, J. et al. RNA design guidelines from a large open laboratory. Proc. Natl Acad. Sci. USA 111, 2122–2127 (2014).

5.

Cooper, S. et al. Predicting protein constructions with a multiplayer on-line recreation. Nature 466, 756–760 (2010).

6.

Epstein, C. J., Goldberger, R. F. & Anfinsen, C. B. The genetic management of tertiary protein construction: research with mannequin techniques. Chilly Spring Harb. Symp. Quant. Biol. 28, 439–449 (1963).

7.

Lin, Y.-R. et al. Management over general form and dimension in de novo designed proteins. Proc. Natl Acad. Sci. USA 112, E5478–E5485 (2015).

eight.

Huang, P.-S., Boyken, S. E. & Baker, D. The approaching of age of de novo protein design. Nature 537, 320–327 (2016).

9.

Marcos, E. et al. Rules for designing proteins with cavities shaped by curved β sheets. Science 355, 201–206 (2017).

10.

Dou, J. et al. De novo design of a fluorescence-activating β-barrel. Nature 561, 485–491 (2018).

11.

Alford, R. F. et al. The Rosetta all-atom power operate for macromolecular modeling and design. J. Chem. Principle Comput. 13, 3031–3048 (2017).

12.

Khatib, F. et al. Crystal construction of a monomeric retroviral protease solved by protein folding recreation gamers. Nat. Struct. Mol. Biol. 18, 1175–1177 (2011).

13.

Eiben, C. B. et al. Elevated Diels–Alderase exercise by spine transforming guided by Foldit gamers. Nat. Biotechnol. 30, 190–192 (2012).

14.

Blout, E. R. & Idelson, M. Compositional results on the configuration of water-soluble polypeptide copolymers of l-glutamic acid and l–lysine. J. Am. Chem. Soc. 80, 4909–4913 (1958).

15.

Doty, P., Imahori, Ok. & Klemperer, E. The answer properties and configurations of a polyampholytic polypeptide: copoly-l-lysine-l-glutamic acid. Proc. Natl Acad. Sci. USA 44, 424–431 (1958).

16.

Ghosh, Ok. & Dill, Ok. A. Principle for protein folding cooperativity: helix bundles. J. Am. Chem. Soc. 131, 2306–2312 (2009).

17.

Rohl, C. A., Strauss, C. E. M., Misura, Ok. M. S. & Baker, D. Protein construction prediction utilizing Rosetta. Strategies Enzymol. 383, 66–93 (2004).

18.

Koga, N. et al. Rules for designing splendid protein constructions. Nature 491, 222–227 (2012).

19.

Regan, L. & DeGrado, W. F. Characterization of a helical protein designed from first rules. Science 241, 976–978 (1988).

20.

Harbury, P. B., Plecs, J. J., Tidor, B., Alber, T. & Kim, P. S. Excessive-resolution protein design with spine freedom. Science 282, 1462–1467 (1998).

21.

Thomson, A. R. et al. Computational design of water-soluble α-helical barrels. Science 346, 485–488 (2014).

22.

Jacobs, T. M. et al. Design of structurally distinct proteins utilizing methods impressed by evolution. Science 352, 687–690 (2016).

23.

Ramachandran, G. N. & Sasisekharan, V. Conformation of polypeptides and proteins. Adv. Protein Chem. 23, 283–438 (1968).

24.

Chen, V. B. et al. MolProbity: all-atom construction validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).

25.

Montelione, G. T. et al. Suggestions of the wwPDB NMR Validation Process Pressure. Construction 21, 1563–1570 (2013).

26.

Zhang, Y. & Skolnick, J. TM-align: a protein construction alignment algorithm primarily based on the TM-score. Nucleic Acids Res. 33, 2302–2309 (2005).

27.

Santoro, M. M. & Bolen, D. W. Unfolding free power modifications decided by the linear extrapolation methodology. 1. Unfolding of phenylmethanesulfonyl α-chymotrypsin utilizing totally different denaturants. Biochemistry 27, 8063–8068 (1988).

28.

Otwinowski, Z. & Minor, W. Processing of X-ray diffraction information collected in oscillation mode. Strategies Enzymol. 276, 307–326 (1997).

29.

McCoy, A. J. et al. Phaser crystallographic software program. J. Appl. Crystallogr. 40, 658–674 (2007).

30.

Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, Ok. Options and growth of Coot. Acta Crystallogr. D 66, 486–501 (2010).

31.

Afonine, P. V. et al. In the direction of automated crystallographic construction refinement with phenix.refine. Acta Crystallogr. D 68, 352–367 (2012).

32.

Jansson, M. et al. Excessive-level manufacturing of uniformly 15N- and 13C-enriched fusion proteins in Escherichia coli. J. Biomol. NMR 7, 131–141 (1996).

33.

Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system primarily based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

34.

Bartels, C., Xia, T. H., Billeter, M., Güntert, P. & Wüthrich, Ok. This system XEASY for computer-supported NMR spectral evaluation of organic macromolecules. J. Biomol. NMR 6, 1–10 (1995).

35.

Liu, G. et al. NMR information assortment and evaluation protocol for high-throughput protein construction dedication. Proc. Natl Acad. Sci. USA 102, 10487–10492 (2005).

36.

Shen, Y., Delaglio, F., Cornilescu, G. & Bax, A. TALOS+: a hybrid methodology for predicting protein spine torsion angles from NMR chemical shifts. J. Biomol. NMR 44, 213–223 (2009).

37.

Huang, Y. J., Tejero, R., Powers, R. & Montelione, G. T. A topology-constrained distance community algorithm for protein construction dedication from NOESY information. Proteins 62, 587–603 (2006).

38.

Güntert, P., Mumenthaler, C. & Wüthrich, Ok. Torsion angle dynamics for NMR construction calculation with the brand new program DYANA. J. Mol. Biol. 273, 283–298 (1997).

39.

Herrmann, T., Güntert, P. & Wüthrich, Ok. Protein NMR construction dedication with automated NOE task utilizing the brand new software program CANDID and the torsion angle dynamics algorithm DYANA. J. Mol. Biol. 319, 209–227 (2002).

40.

Huang, Y. J., Powers, R. & Montelione, G. T. Protein NMR recall, precision, and F-measure scores (RPF scores): construction high quality evaluation measures primarily based on data retrieval statistics. J. Am. Chem. Soc. 127, 1665–1674 (2005).

41.

Linge, J. P., Williams, M. A., Spronk, C. A., Bonvin, A. M. & Nilges, M. Refinement of protein constructions in express solvent. Proteins 50, 496–506 (2003).

42.

Brünger, A. T. et al. Crystallography & NMR system: a brand new software program suite for macromolecular construction dedication. Acta Crystallogr. D 54, 905–921 (1998).

43.

Lüthy, R., Bowie, J. U. & Eisenberg, D. Evaluation of protein fashions with three-dimensional profiles. Nature 356, 83–85 (1992).

44.

Sippl, M. J. Recognition of errors in three-dimensional constructions of proteins. Proteins 17, 355–362 (1993).

45.

Laskowski, R. A., Macarthur, M. W., Moss, D. S. & Thornton, J. M. Procheck—a program to examine the stereochemical high quality of protein constructions. J. Appl. Crystallogr. 26, 283–291 (1993).

46.

Phrase, J. M., Bateman, R. C., Jr, Presley, B. Ok., Lovell, S. C. & Richardson, D. C. Exploring steric constraints on protein mutations utilizing MAGE/PROBE. Protein Sci. 9, 2251–2259 (2000).

47.

Bhattacharya, A., Tejero, R. & Montelione, G. T. Evaluating protein constructions decided by structural genomics consortia. Proteins 66, 778–795 (2007).

48.

Tejero, R., Snyder, D., Mao, B., Aramini, J. M. & Montelione, G. T. PDBStat: a common restraint converter and restraint evaluation software program package deal for protein NMR. J. Biomol. NMR 56, 337–351 (2013).

49.

Trifonov, E. N. in Construction and Strategies, Vol. 1: The Proceedings of the Sixth Dialog held at The College–SUNY (Adenine, 1990).

50.

Holm, L. & Laakso, L. M. Dali server replace. Nucleic Acids Res. 44 (W1), W351–W355 (2016).


Supply hyperlink
asubhan

wordpress autoblog

amazon autoblog

affiliate autoblog

wordpress web site

web site growth

Show More

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Close