Chemistry

Dirhodium tetracarboxylates as catalysts for selective intermolecular C–H functionalization


1.

Wencel-Delord, J. & Glorius, F. C–H bond activation permits the speedy development and late-stage diversification of purposeful molecules. Nat. Chem. 5, 369–375 (2013).

2.

Godula, Okay. & Sames, D. C–H bond functionalization in advanced natural synthesis. Science 312, 67–72 (2006).

Three.

Noisier, A. F. & Brimble, M. A. C–H functionalization within the synthesis of amino acids and peptides. Chem. Rev. 114, 8775–8806 (2014).

four.

Gutekunst, W. R. & Baran, P. S. C–H functionalization logic in whole synthesis. Chem. Soc. Rev. 40, 1976–1991 (2011).

5.

Yamaguchi, J., Yamaguchi, A. D. & Itami, Okay. C–H bond functionalization: rising artificial instruments for pure merchandise and prescribed drugs. Angew. Chem. Int. Ed. 51, 8960–9009 (2012).

6.

Davies, H. M. L. & Morton, D. Latest advances in C–H functionalization. J. Org. Chem. 81, 343–350 (2016).

7.

Davies, H. M. L. Du Bois, J. & Yu, J. Q. C–H functionalization in natural synthesis. Chem. Soc. Rev. 40, 1855–1856 (2011).

eight.

Ye, J. & Lautens, M. Palladium-catalysed norbornene-mediated C–H functionalization of arenes. Nat. Chem. 7, 863–870 (2015).

9.

Davies, H. M. L. & Manning, J. R. Catalytic C–H functionalization by steel carbenoid and nitrenoid insertion. Nature 451, 417–424 (2008).

10.

Karkas, M. D. Electrochemical methods for C–H functionalization and C-N bond formation. Chem. Soc. Rev. 47, 5786–5865 (2018).

11.

Revathi, L., Ravindar, L., Fang, W.-Y., Rakesh, Okay. P. & Qin, H.-L. Seen light-induced C−H bond functionalization: a essential assessment. Adv. Synth. Catal. 360, 4652–4698 (2018).

12.

Wei, Y., Hu, P., Zhang, M. & Su, W. Metallic-catalyzed decarboxylative C–H functionalization. Chem. Rev. 117, 8864–8907 (2017).

13.

Hofmann, A. W. Ueber die einwirkung des broms in alkalischer lösung auf die amine [German]. Ber. Deut. Chem. Ges. 16, 558–560 (1883).

14.

Löffler, Okay. Über eine neue bildungsweiseN-alkylierter pyrrolidine [German]. Ber. Deut. Chem. Ges. 43, 2035–2048 (1910).

15.

Corey, E. J. & Hertler, W. R. The synthesis of dihydroconessine. A technique for functionalizing steroids at C18. J. Am. Chem. Soc. 80, 2903–2904 (1958).

16.

Buchschacher, P., Kalvoda, J., Arigoni, D. & Jeger, O. Direct introduction of a nitrogen operate at C-18 in a steroid1. J. Am. Chem. Soc. 80, 2905–2906 (1958).

17.

Barton, D. H. R., Beaton, J. M., Geller, L. E. & Pechet, M. M. A. A brand new photochemical response. J. Am. Chem. Soc. 82, 2640 (1960).

18.

Wolff, M. E. Cyclization of N-halogenated amines (the Hofmann-Löffler response). Chem. Rev. 63, 55–64 (1963).

19.

Barton, D. H. R., Hesse, R. H., Pechet, M. M. & Smith, L. C. The mechanism of the Barton response. J. Chem. Soc. Perkin Trans. I 1, 1159–1165 (1979).

20.

Stateman, L. M., Nakafuku, Okay. M. & Nagib, D. A. Distant C–H functionalization through selective hydrogen atom switch. Synthesis 50, 1569–1586 (2018).

21.

Jin, J. & MacMillan, D. W. C. Alcohols as alkylating brokers in heteroarene C–H functionalization. Nature 525, 87–90 (2015).

22.

Davies, H. M. L., Hansen, T. & Churchill, M. R. Catalytic uneven C–H activation of alkanes and tetrahydrofuran. J. Am. Chem. Soc. 122, 3063–3070 (2000).

23.

Davies, H. M. L., Antoulinakis, E. G. & Hansen, T. Catalytic uneven synthesis of syn-aldol merchandise from intermolecular C−H insertions between allyl silyl ethers and methyl aryldiazoacetates. Org. Lett. 1, 383–386 (1999).

24.

Davies, H. M. L. & Antoulinakis, E. G. Uneven catalytic C−H activation utilized to the synthesis of syn-aldol merchandise. Org. Lett. 2, 4153–4156 (2000).

25.

Chan, Okay.-H., Guan, X., Lo, V. Okay.-Y. & Che, C.-M. Elevated catalytic exercise of ruthenium(II)-porphyrin-catalyzed carbene/nitrene switch and insertion reactions with N-heterocyclic carbene ligands. Angew. Chem. Int. Ed. 53, 2982–2987 (2014).

26.

Li, Y., Huang, J.-S., Zhou, Z.-Y., Che, C.-M. & You, X.-Z. Remarkably steady iron porphyrins bearing nonheteroatom-stabilized carbene or (alkoxycarbonyl)carbenes: isolation, X-ray crystal buildings, and carbon atom switch reactions with hydrocarbons. J. Am. Chem. Soc. 124, 13185–13193 (2002).

27.

Suematsu, H. & Katsuki, T. Iridium(III) catalyzed diastereo- and enantioselective C–H bond functionalization. J. Am. Chem. Soc. 131, 14218–14219 (2009).

28.

Axten, J. M., Ivy, R., Krim, L. & Winkler, J. D. Enantioselective synthesis of d-threo-methylphenidate. J. Am. Chem. Soc. 121, 6511–6512 (1999).

29.

Davies, H. M. L., Hansen, T., Hopper, D. W. & Panaro, S. A. Extremely regio-, diastereo-, and enantioselective C−H insertions of methyl aryldiazoacetates into cyclic N-Boc-protected amines. Uneven synthesis of novel C2-symmetric amines and threo-methylphenidate. J. Am. Chem. Soc. 121, 6509–6510 (1999).

30.

Cuthbertson, J. D. & MacMillan, D. W. The direct arylation of allylic sp
Three C–H bonds through natural and photoredox catalysis. Nature 519, 74–77 (2015).

31.

Bruckl, T., Baxter, R. D., Ishihara, Y. & Baran, P. S. Innate and guided C–H functionalization logic. Acc. Chem. Res. 45, 826–839 (2012).

32.

Newhouse, T. & Baran, P. S. If C–H bonds might speak: selective C–H bond oxidation. Angew. Chem. Int. Ed. 50, 3362–3374 (2011).

33.

Diesel, J., Finogenova, A. M. & Cramer, N. Nickel-catalyzed enantioselective pyridone C–H functionalizations enabled by a cumbersome N-heterocyclic carbene ligand. J. Am. Chem. Soc. 140, 4489–4493 (2018).

34.

Lewis, J. C., Coelho, P. S. & Arnold, F. H. Enzymatic functionalization of carbon–hydrogen bonds. Chem. Soc. Rev. 40, 2003–2021 (2011).

35.

Lyons, T. W. & Sanford, M. S. Palladium-catalyzed ligand-directed C–H functionalization reactions. Chem. Rev. 110, 1147–1169 (2010).

36.

Hwang, S. J., Cho, S. H. & Chang, S. Synthesis of condensed pyrroloindoles through Pd-catalyzed intramolecular C–H bond functionalization of pyrroles. J. Am. Chem. Soc. 130, 16158–16159 (2008).

37.

McQuaid, Okay. M. & Sames, D. C–H bond functionalization through hydride switch: Lewis acid catalyzed alkylation reactions by direct intramolecular coupling of sp3 C–H bonds and reactive alkenyl oxocarbenium intermediates. J. Am. Chem. Soc. 131, 402–403 (2009).

38.

He, G., Zhao, Y., Zhang, S., Lu, C. & Chen, G. Extremely environment friendly syntheses of azetidines, pyrrolidines, and indolines through palladium catalyzed intramolecular amination of C(sp3)–H and C(sp2)–H bonds at γ and δ positions. J. Am. Chem. Soc. 134, Three–6 (2012).

39.

Dick, A. R., Hull, Okay. L. & Sanford, M. S. A extremely selective catalytic methodology for the oxidative functionalization of C–H bonds. J. Am. Chem. Soc. 126, 2300–2301 (2004).

40.

Desai, L. V., Malik, H. A. & Sanford, M. S. Oxone as an affordable, secure, and environmentally benign oxidant for C–H bond oxygenation. Org. Lett. eight, 1141–1144 (2006).

41.

Kalyani, D. & Sanford, M. S. Regioselectivity in palladium-catalyzed C–H activation/oxygenation reactions. Org. Lett. 7, 4149–4152 (2005).

42.

Liu, Y.-J. et al. Overcoming the restrictions of directed C–H functionalizations of heterocycles. Nature 515, 389–393 (2014).

43.

Simmons, E. M. & Hartwig, J. F. Catalytic functionalization of unactivated main C–H bonds directed by an alcohol. Nature 483, 70–73 (2012).

44.

Pesciaioli, F. et al. Enantioselective cobalt(III)-catalyzed C−H activation enabled by chiral carboxylic acid cooperation. Angew. Chem. Int. Ed. 57, 15425–15429 (2018).

45.

Saint-Denis, T. G., Zhu, R. Y., Chen, G., Wu, Q. F. & Yu, J. Q. Enantioselective C(sp3)H bond activation by chiral transition steel catalysts. Science 359, eaao4798 (2018).

46.

Shi, H., Herron, A. N., Shao, Y., Shao, Q. & Yu, J. Q. Enantioselective distant meta-C–H arylation and alkylation through a chiral transient mediator. Nature 558, 581–585 (2018).

47.

Engle, Okay. M., Mei, T. S., Wasa, M. & Yu, J. Q. Weak coordination as a robust means for creating broadly helpful C–H functionalization reactions. Acc. Chem. Res. 45, 788–802 (2012).

48.

Sigman, M. S. & Werner, E. W. Imparting catalyst management upon classical palladium-catalyzed alkenyl C–H bond functionalization reactions. Acc. Chem. Res. 45, 874–884 (2012).

49.

Hickman, A. J. & Sanford, M. S. Catalyst management of web site selectivity within the PdII/IV-catalyzed direct arylation of naphthalene. ACS Catal. 1, 170–174 (2011).

50.

Hartwig, J. F. Catalyst-controlled site-selective bond activation. Acc. Chem. Res. 50, 549–555 (2017).

51.

Neufeldt, S. R. & Sanford, M. S. Controlling web site selectivity in palladium-catalyzed C–H bond functionalization. Acc. Chem. Res. 45, 936–946 (2012).

52.

Liao, Okay., Negretti, S., Musaev, D. G., Bacsa, J. & Davies, H. M. L. Website-selective and stereoselective functionalization of unactivated C–H bonds. Nature 533, 230–234 (2016).

53.

Liao, Okay. et al. Website-selective and stereoselective functionalization of non-activated tertiary C–H bonds. Nature 551, 609–613 (2017).

54.

Liao, Okay. et al. Website-selective carbene-induced C–H functionalization catalyzed by dirhodium tetrakis(triarylcyclopropanecarboxylate) complexes. ACS Catal. eight, 678–682 (2017).

55.

Ravelli, D., Fagnoni, M., Fukuyama, T., Nishikawa, T. & Ryu, I. Website-selective C–H functionalization by decatungstate anion photocatalysis: synergistic management by polar and steric results expands the response scope. ACS Catal. eight, 701–703 (2018).

56.

Milan, M., Salamone, M., Costas, M. & Bietti, M. The quest for selectivity in hydrogen atom switch based mostly aliphatic C–H bond oxygenation. Acc. Chem. Res. 51, 1984–1995 (2018).

57.

Ammann, S. E., Rice, G. T. & White, M. C. Terminal olefins to chromans, isochromans, and pyrans through allylic C–H oxidation. J. Am. Chem. Soc. 136, 10834–10837 (2014).

58.

Cook dinner, A. Okay., Schimler, S. D., Matzger, A. J. & Sanford, M. S. Catalyst-controlled selectivity within the C–H borylation of methane and ethane. Science 351, 1421–1424 (2016).

59.

Roizen, J. L., Harvey, M. E. & Du Bois, J. Metallic-catalyzed nitrogen-atom switch strategies for the oxidation of aliphatic C–H bonds. Acc. Chem. Res. 45, 911–922 (2012).

60.

Qin, C. et al. D2-symmetric dirhodium catalyst derived from a 1,2,2-triarylcyclopropanecarboxylate ligand: design, synthesis and software. J. Am. Chem. Soc. 133, 19198–19204 (2011).

61.

Qin, C. & Davies, H. M. L. Position of sterically demanding chiral dirhodium catalysts in site-selective C–H functionalization of activated main C–H bonds. J. Am. Chem. Soc. 136, 9792–9796 (2014).

62.

Guptill, D. M. & Davies, H. M. L. 2,2,2-Trichloroethyl aryldiazoacetates as sturdy reagents for the enantioselective C–H functionalization of methyl ethers. J. Am. Chem. Soc. 136, 17718–17721 (2014).

63.

Fu, L., Guptill, D. M. & Davies, H. M. L. Rhodium(II)-catalyzed C–H functionalization of electron-deficient methyl teams. J. Am. Chem. Soc. 138, 5761–5764 (2016).

64.

Fu, J., Ren, Z., Bacsa, J., Musaev, D. G. & Davies, H. M. L. Desymmetrization of cyclohexanes by site- and stereoselective C–H functionalization. Nature 564, 395–399 (2018).

65.

Liu, W. et al. Catalyst-controlled selective functionalization of unactivated C–H bonds within the presence of electronically activated C–H bonds. J. Am. Chem. Soc. 140, 12247–12255 (2018).

66.

Davies, H. M. L. & Morton, D. Guiding rules for web site selective and stereoselective intermolecular C–H functionalization by donor/acceptor rhodium carbenes. Chem. Soc. Rev. 40, 1857–1869 (2011).

67.

Davies, H. M. L. & Denton, J. R. Utility of donor/acceptor-carbenoids to the synthesis of pure merchandise. Chem. Soc. Rev. 38, 3061–3071 (2009).

68.

Davies, H. M. L. & Beckwith, R. E. Catalytic enantioselective C–H activation by the use of metal-carbenoid-induced C–H insertion. Chem. Rev. 103, 2861–2904 (2003).

69.

Davies, H. M. L. Latest advances in catalytic enantioselective intermolecular C–H functionalization. Angew. Chem. Int. Ed. 45, 6422–6425 (2006).

70.

Doyle, M. P., Duffy, R., Ratnikov, M. & Zhou, L. Catalytic carbene insertion into C–H bonds. Chem. Rev. 110, 704–724 (2010).

71.

Scott, L. T. & DeCicco, G. J. Intermolecular carbon–hydrogen insertion of copper carbenoids. J. Am. Chem. Soc. 96, 322–323 (1974).

72.

Demonceau, A., Noels, A. F., Hubert, A. J. & Teyssié, P. Transition-metal-catalysed reactions of diazoesters. Insertion into C–H bonds of paraffins by carbenoids. J. Chem. Soc. Chem. Commun. 1981, 688–689 (1981).

73.

Caballero, A. et al. Silver-catalyzed C–C bond formation between methane and ethyl diazoacetate in supercritical CO2. Science 332, 835–838 (2011).

74.

Callot, H. J. & Metz, F. Homologation of n-alkanes utilizing diazoesters and rhodium(III)porphyrins. Enhanced assault on main C–H bonds. Tetrahedron Lett. 23, 4321–4324 (1982).

75.

Callot, H. J. & Metz, F. Rhodium(II)2,four,6-triarylbenzoates: improved catalysts for the cyclopropanation of z-olefins. Tetrahedron 41, 4495–4501 (1985).

76.

Callot, H. J. & Schaeffer, E. Rhodium(III)porphyrins and diazoalkanes – alkylrhodium(III)porphyrins and carbene switch. New J. Chem. four, 311–314 (1980).

77.

Caballero, A. et al. Extremely regioselective functionalization of aliphatic carbon-hydrogen bonds with a perbromohomoscorpionate copper(I) catalyst. J. Am. Chem. Soc. 125, 1446–1447 (2003).

78.

Weldy, N. M. et al. Iridium(III)-bis(imidazolinyl)phenyl catalysts for enantioselective C–H functionalization with ethyl diazoacetate. Chem. Sci. 7, 3142–3146 (2016).

79.

Taber, D. F. & Ruckle, R. E. Cyclopentane development by dirhodium tetraacetate-mediated intramolecular C–H insertion: steric and digital results. J. Am. Chem. Soc. 108, 7686–7693 (1986).

80.

Doyle, M. P., Kalinin, A. V. & Ene, D. G. Chiral catalyst managed diastereoselection and regioselection in intramolecular carbon−hydrogen insertion reactions of diazoacetates. J. Am. Chem. Soc. 118, 8837–8846 (1996).

81.

Taber, D. F. & Stiriba, S.-E. Synthesis of pure merchandise by rhodium-mediated intramolecular C–H insertion. Chem. Eur. J. four, 990–992 (1998).

82.

Breslow, R. & Gellman, S. H. Intramolecular nitrene carbon–hydrogen insertions mediated by transition-metal complexes as nitrogen analogs of cytochrome P-450 reactions. J. Am. Chem. Soc. 105, 6728–6729 (1983).

83.

Espino, C. G., Wehn, P. M., Chow, J. & Du Bois, J. Synthesis of 1,Three-difunctionalized amine derivatives by way of selective C−H bond oxidation. J. Am. Chem. Soc. 123, 6935–6936 (2001).

84.

Hashimoto, S.-i, Watanabe, N., Sato, T., Shiro, M. & Ikegami, S. Enhancement of enantioselectivity in intramolecular C–H insertion reactions of α-diazo β-keto esters catalyzed by chiral dirhodium(II) carboxylates. Tetrahedron Lett. 34, 5109–5112 (1993).

85.

Doyle, M. P. et al. Diastereocontrol for extremely enantioselective carbon–hydrogen insertion reactions of cycloalkyl diazoacetates. J. Am. Chem. Soc. 116, 4507–4508 (1994).

86.

Bode, J. W., Doyle, M. P., Protopopova, M. N. & Zhou, Q.-L. Intramolecular regioselective insertion into unactivated prochiral carbon−hydrogen bonds with diazoacetates of main alcohols catalyzed by chiral dirhodium(II) carboxamidates. Extremely enantioselective whole synthesis of pure lignan lactones. J. Org. Chem. 61, 9146–9155 (1996).

87.

Caballero, A. et al. Catalytic functionalization of low reactive C(sp3)–H and C(sp2)–H bonds of alkanes and arenes by carbene switch from diazo compounds. Dalton Trans. 44, 20295–20307 (2015).

88.

Davies, H. M. L., Smith, H. D. & Korkor, O. Tandem cyclopropanation/Cope rearrangement sequence. Stereospecific [3 + 4] cycloaddition response of vinylcarbenoids with cyclopentadiene. Tetrahedron Lett. 28, 1853–1856 (1987).

89.

Davies, H. M. L. & Doan, B. D. Uneven synthesis of the tremulane skeleton by a tandem cyclopropanation/Cope rearrangement. Tetrahedron Lett. 37, 3967–3970 (1996).

90.

Davies, H. M. L., Bruzinski, P. R. & Fall, M. J. Impact of diazoalkane construction on the stereoselectivity of rhodium(II) (S)-N-(arylsulfonyl)prolinate catalyzed cyclopropanations. Tetrahedron Lett. 37, 4133–4136 (1996).

91.

Lamb, Okay. N. et al. Synthesis of benzodihydrofurans by uneven C–H insertion reactions of donor/donor rhodium carbenes. Chem. Eur. J. 23, 11843–11855 (2017).

92.

Soldi, C. et al. Enantioselective intramolecular C–H insertion reactions of donor-donor steel carbenoids. J. Am. Chem. Soc. 136, 15142–15145 (2014).

93.

Zhu, D. et al. Extremely chemo- and stereoselective catalyst-controlled allylic C–H insertion and cyclopropanation utilizing donor/donor carbenes. Angew. Chem. Int. Ed. 57, 12405–12409 (2018).

94.

Zhu, D. et al. Enantioselective intramolecular C–H insertion of donor and donor/donor carbenes by a nondiazo method. Angew. Chem. Int. Ed. 55, 8452–8456 (2016).

95.

Hansen, J., Autschbach, J. & Davies, H. M. L. Computational research on the selectivity of donor/acceptor-substituted rhodium carbenoids. J. Org. Chem. 74, 6555–6563 (2009).

96.

Davies, H. M. L., Venkataramani, C., Hansen, T. & Hopper, D. W. New strategic reactions for natural synthesis: catalytic uneven C–H activation alpha to nitrogen as a surrogate for the mannich response. J. Am. Chem. Soc. 125, 6462–6468 (2003).

97.

Davies, H. M. L., Ren, P. & Jin, Q. Catalytic uneven allylic C−H activation as a surrogate of the uneven Claisen rearrangement. Org. Lett. Three, 3587–3590 (2001).

98.

Davies, H. M. L. & Ren, P. Catalytic uneven C−H activation of silyl enol ethers as an equal of an uneven Michael response. J. Am. Chem. Soc. 123, 2070–2071 (2001).

99.

Davies, H. M. L., Yang, J. & Nikolai, J. Uneven C–H insertion of Rh(II) stabilized carbenoids into acetals: A C–H activation protocol as a Claisen condensation equal. J. Organomet. Chem. 690, 6111–6124 (2005).

100.

Hansen, J. H. et al. On the mechanism and selectivity of the mixed C–H activation/Cope rearrangement. J. Am. Chem. Soc. 133, 5076–5085 (2011).

101.

Davies, H. M. L. & Lian, Y. The mixed C–H functionalization/Cope rearrangement: discovery and functions in natural synthesis. Acc. Chem. Res. 45, 923–935 (2012).

102.

Davies, H. M. L. & Jin, Q. Extremely diastereoselective and enantioselective C–H functionalization of 1,2-dihydronaphthalenes: a mixed C–H activation/Cope rearrangement adopted by a retro-Cope rearrangement. J. Am. Chem. Soc. 126, 10862–10863 (2004).

103.

Lian, Y. & Davies, H. M. L. Mixed C–H functionalization/Cope rearrangement with vinyl ethers as a surrogate for the vinylogous Mukaiyama aldol response. J. Am. Chem. Soc. 133, 11940–11943 (2011).

104.

Davies, H. M. L., Dai, X. & Lengthy, M. S. Mixed C–H activation/cope rearrangement as a strategic response in natural synthesis: whole synthesis of (-)-colombiasin a and (-)-elisapterosin B. J. Am. Chem. Soc. 128, 2485–2490 (2006).

105.

Davies, H. M. L. D., X. & Lengthy, M. S. Mixed C–H activation/cope rearrangement as a strategic response in natural synthesis: whole synthesis of (-)-colombiasin a and (-)-elisapterosin B. J. Am. Chem. Soc. 128, 2485–2490 (2006).

106.

Thu, H.-Y. et al. Extremely selective steel catalysts for intermolecular carbenoid insertion into main C–H bonds and enantioselective C–C bond formation. Angew. Chem. Int. Ed. 47, 9747–9751 (2008).

107.

Hansen, J. & Davies, H. M. L. Excessive symmetry dirhodium(II) paddlewheel complexes as chiral catalysts. Coord. Chem. Rev. 252, 545–555 (2008).

108.

Watanabe, N., Ogawa, T., Ohtake, Y., Ikegami, S. & Hashimoto, S. Dirhodium(II) tetrakis[N-phthaloyl-(S)-tert-leucinate]: a notable catalyst for enantiotopically selective fragrant substitution reactions of α-diazocarbonyl compounds. Synlett 1996, 85–86 (1996).

109.

Yamawaki, M., Tsutsui, H., Kitagaki, S., Anada, M. & Hashimoto, S. Dirhodium(II) tetrakis[N-tetrachlorophthaloyl-(S)-tert-leucinate]: a brand new chiral Rh(II) catalyst for enantioselective amidation of C–H bonds. Tetrahedron Lett. 43, 9561–9564 (2002).

110.

Reddy, R. P. & Davies, H. M. L. Dirhodium tetracarboxylates derived from adamantylglycine as chiral catalysts for enantioselective C–H aminations. Org. Lett. eight, 5013–5016 (2006).

111.

Lindsay, V. N., Lin, W. & Charette, A. B. Experimental proof for the all-up reactive conformation of chiral rhodium(II) carboxylate catalysts: enantioselective synthesis of cis-cyclopropane alpha-amino acids. J. Am. Chem. Soc. 131, 16383–16385 (2009).

112.

Lindsay, V. N. G. & Charette, A. B. Design and synthesis of chiral heteroleptic rhodium(II) carboxylate catalysts: experimental investigation of halogen bond rigidification results in uneven cyclopropanation. ACS Catal. 2, 1221–1225 (2012).

113.

DeAngelis, A., Dmitrenko, O., Yap, G. P. & Fox, J. M. Chiral crown conformation of Rh(2)(S-PTTL)(four): enantioselective cyclopropanation with alpha-alkyl-alpha-diazoesters. J. Am. Chem. Soc. 131, 7230–7231 (2009).

114.

DeAngelis, A. et al. The chiral crown conformation in paddlewheel complexes. Chem. Commun. 46, 4541–4543 (2010).

115.

Liao, Okay. et al. Design of catalysts for site-selective and enantioselective functionalization of non-activated main C–H bonds. Nat. Chem. 10, 1048–1055 (2018).

116.

Banerjee, A., Sarkar, S. & Patel, B. Okay. C–H functionalisation of cycloalkanes. Org. Biomol. Chem. 15, 505–530 (2017).

117.

Salamone, M., Ortega, V. B. & Bietti, M. Enhanced reactivity in hydrogen atom switch from tertiary websites of cyclohexanes and decalins through pressure launch: equatorial C–H activation versus axial C–H deactivation. J. Org. Chem. 80, 4710–4715 (2015).

118.

Milan, M., Bietti, M. & Costas, M. Extremely enantioselective oxidation of nonactivated aliphatic C–H bonds with hydrogen peroxide catalyzed by manganese complexes. ACS Cent. Sci. Three, 196–204 (2017).

119.

Dantignana, V. et al. Chemoselective aliphatic C-H bond oxidation enabled by polarity reversal. ACS Cent. Sci. Three, 1350–1358 (2017).

120.

Wang, H., Li, G., Engle, Okay. M., Yu, J. Q. & Davies, H. M. L. Sequential C–H functionalization reactions for the enantioselective synthesis of extremely functionalized 2,Three-dihydrobenzofurans. J. Am. Chem. Soc. 135, 6774–6777 (2013).

121.

Bedell, T. A. et al. Speedy development of a benzo-fused indoxamycin core enabled by site-selective C–H functionalizations. Angew. Chem. Int. Ed. 55, 8270–8274 (2016).


Supply hyperlink
asubhan

wordpress autoblog

amazon autoblog

affiliate autoblog

wordpress web site

web site improvement

Show More

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Close