Chemistry

DNA harm detection in nucleosomes includes DNA register shifting


1.

Thoma, F. Restore of UV lesions in nucleosomes – intrinsic properties and transforming. DNA Restore (Amst.) four, 855–869 (2005).

2.

Rodriguez, Y., Hinz, J. M. & Smerdon, M. J. Accessing DNA harm in chromatin: Making ready the chromatin panorama for base excision restore. DNA Restore (Amst.) 32, 113–119 (2015).

three.

Hanawalt, P. C. & Spivak, G. Transcription-coupled DNA restore: 20 years of progress and surprises. Nat. Rev. Mol. Cell Biol. 9, 958–970 (2008).

four.

Luger, Okay., Mäder, A. W., Richmond, R. Okay., Sargent, D. F. & Richmond, T. J. Crystal construction of the nucleosome core particle at 2.eight Å decision. Nature 389, 251–260 (1997).

5.

McGinty, R. Okay. & Tan, S. Nucleosome construction and performance. Chem. Rev. 115, 2255–2273 (2015).

6.

Sugasawa, Okay. et al. UV-induced ubiquitylation of XPC protein mediated by UV-DDB-ubiquitin ligase advanced. Cell 121, 387–400 (2005).

7.

Groisman, R. et al. The ubiquitin ligase exercise within the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA harm. Cell 113, 357–367 (2003).

eight.

Cavadini, S. et al. Cullin–RING ubiquitin E3 ligase regulation by the COP9 signalosome. Nature 531, 598–603 (2016).

9.

Wang, H. et al. Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates mobile response to DNA harm. Mol. Cell 22, 383–394 (2006).

10.

Lehmann, A. R. DNA repair-deficient illnesses, xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. Biochimie 85, 1101–1111 (2003).

11.

Luijsterburg, M. S. et al. Dynamic in vivo interplay of DDB2 E3 ubiquitin ligase with UV-damaged DNA is unbiased of damage-recognition protein XPC. J. Cell Sci. 120, 2706–2716 (2007).

12.

Puumalainen, M. R. et al. Chromatin retention of DNA harm sensors DDB2 and XPC via lack of p97 segregase causes genotoxicity. Nat. Commun. 5, 3695 (2014).

13.

Fei, J. et al. Regulation of nucleotide excision restore by UV-DDB: prioritization of injury recognition to internucleosomal DNA. PLoS Biol. 9, e1001183 (2011).

14.

Fischer, E. S. et al. The molecular foundation of CRL4DDB2/CSA ubiquitin ligase structure, focusing on, and activation. Cell 147, 1024–1039 (2011).

15.

Chu, G. & Chang, E. Xeroderma pigmentosum group E cells lack a nuclear issue that binds to broken DNA. Science 242, 564–567 (1988).

16.

Lehmann, A. R., McGibbon, D. & Stefanini, M. Xeroderma pigmentosum. Orphanet J. Uncommon Dis. 6, 70 (2011).

17.

Scrima, A. et al. Structural foundation of UV DNA-damage recognition by the DDB1–DDB2 advanced. Cell 135, 1213–1223 (2008).

18.

Yeh, J. I. et al. Broken DNA induced UV-damaged DNA-binding protein (UV-DDB) dimerization and its roles in chromatinized DNA restore. Proc. Natl Acad. Sci. USA 109, E2737–E2746 (2012).

19.

Li, G., Levitus, M., Bustamante, C. & Widom, J. Speedy spontaneous accessibility of nucleosomal DNA. Nat. Struct. Mol. Biol. 12, 46–53 (2005).

20.

Zhu, F. et al. The interplay panorama between transcription components and the nucleosome. Nature 562, 76–81 (2018).

21.

Wittschieben, B. O., Iwai, S. & Wooden, R. D. DDB1–DDB2 (xeroderma pigmentosum group E) protein advanced acknowledges a cyclobutane pyrimidine dimer, mismatches, apurinic/apyrimidinic websites, and compound lesions in DNA. J. Biol. Chem. 280, 39982–39989 (2005).

22.

Osakabe, A. et al. Structural foundation of pyrimidine–pyrimidone (6–four) photoproduct recognition by UV-DDB within the nucleosome. Sci. Rep. 5, 16330 (2015).

23.

Lan, L. et al. Monoubiquitinated histone H2A destabilizes photolesion-containing nucleosomes with concomitant launch of UV-damaged DNA-binding protein E3 ligase. J. Biol. Chem. 287, 12036–12049 (2012).

24.

Kapetanaki, M. G. et al. The DDB1-CUL4ADDB2 ubiquitin ligase is poor in xeroderma pigmentosum group E and targets histone H2A at UV-damaged DNA websites. Proc. Natl Acad. Sci. USA 103, 2588–2593 (2006).

25.

Vasudevan, D., Chua, E. Y. D. & Davey, C. A. Crystal constructions of nucleosome core particles containing the ‘601’ sturdy positioning sequence. J. Mol. Biol. 403, 1–10 (2010).

26.

Pich, O. et al. Somatic and germline mutation periodicity comply with the orientation of the DNA minor groove round nucleosomes. Cell 175, 1074–1087.e18 (2018).

27.

Brown, A. J., Mao, P., Smerdon, M. J., Wyrick, J. J. & Roberts, S. A. Nucleosome positions set up an prolonged mutation signature in melanoma. PLoS Genet. 14, e1007823 (2018).

28.

Mao, P., Smerdon, M. J., Roberts, S. A. & Wyrick, J. J. Chromosomal panorama of UV harm formation and restore at single-nucleotide decision. Proc. Natl Acad. Sci. USA 113, 9057–9062 (2016).

29.

Bilokapic, S., Strauss, M. & Halic, M. Structural rearrangements of the histone octamer translocate DNA. Nat. Commun. 9, 1330 (2018).

30.

Kitevski-LeBlanc, J. L. et al. Investigating the dynamics of destabilized nucleosomes utilizing methyl-TROSY NMR. J. Am. Chem. Soc. 140, 4774–4777 (2018).

31.

Iwai, S., Shimizu, M., Kamiya, H. & Ohtsuka, E. Synthesis of a phosphoramidite coupling unit of the pyrimidine (6−four) pyrimidone photoproduct and its incorporation into oligodeoxynucleotides. J. Am. Chem. Soc. 118, 7642–7643 (1996).

32.

Abdulrahman, W. et al. A set of baculovirus switch vectors for screening of affinity tags and parallel expression methods. Anal. Biochem. 385, 383–385 (2009).

33.

Marks, B. D. et al. Multiparameter evaluation of a display screen for progesterone receptor ligands: evaluating fluorescence lifetime and fluorescence polarization measurements. Assay Drug Dev. Technol. three, 613–622 (2005).

34.

Kuzmič, P. DynaFit—a software program package deal for enzymology. Strategies Enzymol. 467, 247–280 (2009).

35.

Thomä, N. & Goody, R. S. in Kinetic Evaluation of Macromolecules: A sensible strategy (ed. Johnson, Okay. A.) 153–170 (Oxford Univ. Press, 2003).

36.

Reardon, J. T. et al. Comparative evaluation of binding of human broken DNA-binding protein (XPE) and Escherichia coli harm recognition protein (UvrA) to the most important ultraviolet photoproducts: T[c,s]T, T[t,s]T, T[6–4]T, and T[Dewar]T. J. Biol. Chem. 268, 21301–21308 (1993).

37.

Gaidatzis, D., Lerch, A., Hahne, F. & Stadler, M. B. QuasR: quantification and annotation of quick reads in R. Bioinformatics 31, 1130–1132 (2015).

38.

Tang, G. et al. EMAN2: an extensible picture processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007).

39.

Hohn, M. et al. SPARX, a brand new atmosphere for cryo-EM picture processing. J. Struct. Biol. 157, 47–55 (2007).

40.

Grant, T. & Grigorieff, N. Measuring the optimum publicity for single particle cryo-EM utilizing a 2.6 Å reconstruction of rotavirus VP6. eLife four, e06980 (2015).

41.

Li, X. et al. Electron counting and beam-induced movement correction allow near-atomic-resolution single-particle cryo-EM. Nat. Strategies 10, 584–590 (2013).

42.

Zhang, Okay. Gctf: Actual-time CTF dedication and correction. J. Struct. Biol. 193, 1–12 (2016).

43.

Scheres, S. H. RELION: implementation of a Bayesian strategy to cryo-EM construction dedication. J. Struct. Biol. 180, 519–530 (2012).

44.

Rosenthal, P. B. & Henderson, R. Optimum dedication of particle orientation, absolute hand, and distinction loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).

45.

Chen, S. et al. Excessive-resolution noise substitution to measure overfitting and validate decision in 3D construction dedication by single particle electron cryomicroscopy. Ultramicroscopy 135, 24–35 (2013).

46.

Adams, P. D. et al. PHENIX: a complete Python-based system for macromolecular construction answer. Acta Crystallogr. D 66, 213–221 (2010).

47.

de la Rosa-Trevín, J. M. et al. Xmipp three.zero: an improved software program suite for picture processing in electron microscopy. J. Struct. Biol. 184, 321–328 (2013).

48.

Grant, T., Rohou, A. & Grigorieff, N. cisTEM, user-friendly software program for single-particle picture processing. eLife 7, e35383 (2018).

49.

Morgan, M. T. et al. Structural foundation for histone H2B deubiquitination by the SAGA DUB module. Science 351, 725–728 (2016).

50.

Ong, M. S., Richmond, T. J. & Davey, C. A. DNA stretching and excessive kinking within the nucleosome core. J. Mol. Biol. 368, 1067–1074 (2007).

51.

Emsley, P. & Cowtan, Okay. Coot: model-building instruments for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

52.

Nicholls, R. A., Lengthy, F. & Murshudov, G. N. Low-resolution refinement instruments in REFMAC5. Acta Crystallogr. D 68, 404–417 (2012).

53.

Chen, V. B. et al. MolProbity: all-atom construction validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).

54.

Winn, M. D. et al. Overview of the CCP4 suite and present developments. Acta Crystallogr. D 67, 235–242 (2011).

55.

Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced movement for improved cryo-electron microscopy. Nat. Strategies 14, 331–332 (2017).

56.

Ekundayo, B., Richmond, T. J. & Schalch, T. Capturing structural heterogeneity in chromatin fibers. J. Mol. Biol. 429, 3031–3042 (2017).


Supply hyperlink
asubhan

wordpress autoblog

amazon autoblog

affiliate autoblog

wordpress web site

web site growth

Show More

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Close