Chemistry

Dynamic interactions of ABHD5 with PNPLA3 regulate triacylglycerol metabolism in brown adipocytes


1.

Haemmerle, G. et al. Faulty lipolysis and altered power metabolism in mice missing adipose triglyceride lipase. Science 312, 734–737 (2006).

2.

Lass, A. et al. Adipose triglyceride lipase-mediated lipolysis of mobile fats shops is activated by CGI-58 and faulty in Chanarin–Dorfman syndrome. Cell Metab. three, 309–319 (2006).

three.

Sztalryd, C. & Brasaemle, D. L. The perilipin household of lipid droplet proteins: gatekeepers of intracellular lipolysis. Biochim. Biophys. Acta 1862, 1221–1232 (2017).

four.

Schweiger, M., Lass, A., Zimmermann, R., Eichmann, T. O. & Zechner, R. Impartial lipid storage illness: genetic problems attributable to mutations in adipose triglyceride lipase/PNPLA2 or CGI-58/ABHD5. Am. J. Physiol. Endocrinol. Metab. 297, E289 (2009).

5.

Lord, C. C. et al. Regulation of hepatic triacylglycerol metabolism by CGI-58 doesn’t require ATGL co-activation. Cell Rep. 16, 939–949 (2016).

6.

Xie, M. & Roy, R. The causative gene in Chanarian–Dorfman syndrome regulates lipid droplet homeostasis in C. elegans. PLoS Genet. 11, e1005284 (2015).

7.

Holmes, R. Comparative research of adipose triglyceride lipase genes and proteins: an historical gene in vertebrate evolution. Open Entry Bioinformatics four, 15–29 (2012).

eight.

Baulande, S., Lasnier, F., Lucas, M. & Pairault, J. Adiponutrin, a transmembrane protein similar to a novel dietary- and obesity-linked mRNA particularly expressed within the adipose lineage. J. Biol. Chem. 276, 33336–33344 (2001).

9.

Kershaw, E. E. et al. Adipose triglyceride lipase: perform, regulation by insulin, and comparability with adiponutrin. Diabetes 55, 148–157 (2006).

10.

He, S. et al. A sequence variation (I148M) in PNPLA3 related to nonalcoholic fatty liver illness disrupts triglyceride hydrolysis. J. Biol. Chem. 285, 6706–6715 (2010).

11.

Huang, Y., Cohen, J. C. & Hobbs, H. H. Expression and characterization of a PNPLA3 protein isoform (I148M) related to nonalcoholic fatty liver illness. J. Biol. Chem. 286, 37085–37093 (2011).

12.

Kumari, M. et al. Adiponutrin capabilities as a nutritionally regulated lysophosphatidic acid acyltransferase. Cell Metab. 15, 691–702 (2012).

13.

Romeo, S. et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver illness. Nat. Genet. 40, 1461–1465 (2008).

14.

BasuRay, S., Smagris, E., Cohen, J. C. & Hobbs, H. H. The PNPLA3 variant related to fatty liver illness (I148M) accumulates on lipid droplets by evading ubiquitylation. Hepatology 66, 1111–1124 (2017).

15.

Smagris, E. et al. Pnpla3
I148M knockin mice accumulate PNPLA3 on lipid droplets and develop hepatic steatosis. Hepatology 61, 108–118 (2015).

16.

Basantani, M. Ok. et al. Pnpla3/adiponutrin deficiency in mice doesn’t contribute to fatty liver illness or metabolic syndrome. J. Lipid Res. 52, 318–329 (2011).

17.

Chen, W., Chang, B., Li, L. & Chan, L. Patatin-like phospholipase domain-containing three/adiponutrin deficiency in mice is just not related to fatty liver illness. Hepatology 52, 1134–1142 (2010).

18.

Li, J. Z. et al. Power overexpression of PNPLA3I148M in mouse liver causes hepatic steatosis. J. Clin. Make investments. 122, 4130–4144 (2012).

19.

Perttila, J. et al. PNPLA3 is regulated by glucose in human hepatocytes, and its I148M mutant slows down triglyceride hydrolysis. Am. J. Physiol. Endocrinol. Metab.. 302, E1063–E1069 (2012).

20.

Patel, S., Yang, W., Kozusko, Ok., Saudek, V. & Savage, D. B. Perilipins 2 and three lack a carboxy-terminal area current in perilipin 1 concerned in sequestering ABHD5 and suppressing basal lipolysis. Proc. Natl Acad. Sci. USA 111, 9163–9168 (2014).

21.

Granneman, J. G. & Moore, H.-P. H. Location, location: protein trafficking and lipolysis in adipocytes. Tendencies Endocrinol. Metab. 19, three–9 (2008).

22.

Yamaguchi, T., Omatsu, N., Matsushita, S. & Osumi, T. CGI-58 interacts with perilipin and is localized to lipid droplets: doable involvement of CGI-58 mislocalization in Chanarin–Dorfman syndrome. J. Biol. Chem. 279, 30490–30497 (2004).

23.

Granneman, J. G., Moore, H.-P. H., Mottillo, E. P. & Zhu, Z. Useful interactions between Mldp (LSDP5) and Abhd5 within the management of intracellular lipid accumulation. J. Biol. Chem. 284, 3049–3057 (2009).

24.

Kerppola, T. Ok. Design and implementation of bimolecular fluorescence complementation (BiFC) assays for the visualization of protein interactions in residing cells. Nat. Protoc. 1, 1278–1286 (2006).

25.

Huang, Y. et al. A feed-forward loop amplifies dietary regulation of PNPLA3. Proc. Natl Acad. Sci. USA 107, 7892–7897 (2010).

26.

Qiao, A. et al. Mouse patatin-like phospholipase domain-containing three influences systemic lipid and glucose homeostasis. Hepatology 54, 509–521 (2011).

27.

Sanders, M. A. et al. Endogenous and artificial ABHD5 ligands regulate ABHD5–perilipin interactions and lipolysis in fats and muscle. Cell Metab. 22, 851–860 (2015).

28.

Rondini, E. A. et al. Novel pharmacological probes reveal ABHD5 as a locus of lipolysis management in white and brown adipocytes. J. Pharmacol. Exp. Ther. 363, 367–376 (2017).

29.

Cohen, J. C., Horton, J. D. & Hobbs, H. H. Human fatty liver illness: previous questions and new insights. Science 332, 1519–1523 (2011).

30.

Dongiovanni, P. et al. PNPLA3 I148M polymorphism and progressive liver illness. World J. Gastroenterol. 19, 6969–6978 (2013).

31.

Ghosh, A. Ok., Ramakrishnan, G., Chandramohan, C. & Rajasekharan, R. CGI-58, the causative gene for Chanarin–Dorfman syndrome, mediates acylation of lysophosphatidic acid. J. Biol. Chem. 283, 24525–24533 (2008).

32.

Chakrabarti, P. et al. SIRT1 controls lipolysis in adipocytes through FOXO1-mediated expression of ATGL. J. Lipid Res. 52, 1693–1701 (2011).

33.

Dubuquoy, C. et al. Distinct regulation of adiponutrin/PNPLA3 gene expression by the transcription elements ChREBP and SREBP1c in mouse and human hepatocytes. J. Hepatol. 55, 145–153 (2011).

34.

Chamoun, Z., Vacca, F., Parton, R. G. & Gruenberg, J. PNPLA3/adiponutrin capabilities in lipid droplet formation. Biol. Cell 105, 219–233 (2013).

35.

Donati, B. et al. The rs2294918 E434Ok variant modulates patatin-like phospholipase domain-containing three expression and liver injury. Hepatology 63, 787–798 (2016).

36.

Kumashiro, N. et al. Position of patatin-like phospholipase domain-containing three on lipid-induced hepatic steatosis and insulin resistance in rats. Hepatology 57, 1763–1772 (2013).

37.

Mitsche, M. A., Hobbs, H. H. & Cohen, J. C. Patatin-like phospholipase area–containing protein three promotes transfers of important fatty acids from triglycerides to phospholipids in hepatic lipid droplets. J. Biol. Chem. 293, 6958–6968 (2018).

38.

Montero-Moran, G. et al. CGI-58/ABHD5 is a coenzyme A-dependent lysophosphatidic acid acyltransferase. J. Lipid Res. 51, 709–719 (2010).

39.

Edens, N. Ok., Leibel, R. L. & Hirsch, J. Mechanism of free fatty acid re-esterification in human adipocytes in vitro. J. Lipid Res. 31, 1423–1431 (1990).

40.

Leibel, R. L., Hirsch, J., Berry, E. M. & Gruen, R. Ok. Alterations in adipocyte free fatty acid re-esterification related to weight problems and weight discount in man. Am. J. Clin. Nutr. 42, 198–206 (1985).

41.

Jenkins, C. M. et al. Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 members of the family possessing triacylglycerol lipase and acylglycerol transacylase actions. J. Biol. Chem. 279, 48968–48975 (2004).

42.

Ohno, Y., Nara, A., Nakamichi, S. & Kihara, A. Molecular mechanism of the ichthyosis pathology of Chanarin–Dorfman syndrome: stimulation of PNPLA1-catalyzed ω-O-acylceramide manufacturing by ABHD5. J. Dermatol. Sci. 92, 245–253 (2018).

43.

Kien, B. et al. ABHD5 stimulates PNPLA1-mediated ω-O-acylceramide biosynthesis important for a purposeful pores and skin permeability barrier. J. Lipid Res. 59, 2360–2367 (2018).

44.

Stender, S. et al. Adiposity amplifies the genetic danger of fatty liver illness conferred by a number of loci. Nat. Genet. 49, 842–847 (2017).

45.

Schweiger, M. et al. Measurement of lipolysis. Strategies Enzymol. 538, 171–193 (2014).

46.

Bligh, E. G. & Dyer, W. J. A speedy methodology of complete lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959).


Supply hyperlink
asubhan

wordpress autoblog

amazon autoblog

affiliate autoblog

wordpress web site

web site growth

Show More

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Close