Chemistry

Dynamic interplay between basin redox and the biogeochemical nitrogen cycle in an unconventional Proterozoic petroleum system


1.

Pedersen, T. F. & Calvert, S. E. Anoxia vs productiveness; what controls the formation of organic-carbon-rich sediments and sedimentary rocks? Am. Assoc. Pet. Geol. Bull. 74, 454–466 (1990).

2.

Condie, Ok. C., Des Marais, D. J. & Abbott, D. Precambrian superplumes and supercontinents: a file in black shales, carbon isotopes, and paleoclimates? Precambrian Res. 106, 239–260 (2001).

three.

Meyer, Ok. M. & Kump, L. R. Oceanic Euxinia in Earth Historical past: Causes and Penalties. Annu. Rev. Earth. Planet. Sci. 36, 251–288 (2008).

four.

Hartnett, H. E., Keil, R. G., Hedges, J. I. & Devol, A. H. Affect of oxygen publicity time on natural carbon preservation in continental margin sediments. Nature 391, 572–575 (1998).

5.

Kennedy, M. J., Pevear, D. R. & Hill, R. J. Mineral Floor Management of Natural Carbon in Black Shale. Science 295, 657–660 (2002).

6.

Mayer, L. M. Floor space management of natural carbon accumulation in continental shelf sediments. Geochim. Cosmochim. Acta. 58, 1271–1284 (1994).

7.

Hedges, J. I. & Keil, R. G. Sedimentary natural matter preservation: an evaluation and speculative synthesis. Marine Chemistry 49, 81–115 (1995).

eight.

Müller, P. J. & Suess, E. Productiveness, sedimentation fee, and sedimentary natural matter within the oceans—I. Natural carbon preservation. Deep Sea Analysis Half A Oceanographic Analysis Papers 26, 1347–1362 (1979).

9.

Falkowski, P. G. Evolution of the nitrogen cycle and its affect on the organic sequestration of CO2 within the ocean. Nature 387, 272–275 (1997).

10.

Tyrrell, T. The relative influences of nitrogen and phosphorus on oceanic main manufacturing. Nature 400, 525–531 (1999).

11.

Anbar, A. D. & Knoll, A. H. Proterozoic ocean chemistry and evolution: a bioinorganic bridge? Science 297, 1137–1142 (2002).

12.

Bristow, L. A., Mohr, W., Ahmerkamp, S. & Kuypers, M. M. M. Vitamins that restrict progress within the ocean. Present Biology 27, R474–R478 (2017).

13.

Johnston, D. T. et al. An rising image of Neoproterozoic ocean chemistry: Insights from the Chuar Group, Grand Canyon, USA. Earth Planet. Sci. Lett. 290, 64–73 (2010).

14.

Babbin, A. R., Keil, R. G., Devol, A. H. & Ward, B. B. Natural Matter Stoichiometry, Flux, and Oxygen Management Nitrogen Loss within the Ocean. Science 344, 406 (2014).

15.

Ader, M. et al. Interpretation of the nitrogen isotopic composition of Precambrian sedimentary rocks: Assumptions and views. Chemical Geology 429, 93–110 (2016).

16.

Stüeken, E. E., Kipp, M. A., Koehler, M. C. & Buick, R. The evolution of Earth’s biogeochemical nitrogen cycle. Earth-Science Evaluations 160, 220–239 (2016).

17.

Planavsky, N. J. et al. Widespread iron-rich situations within the mid-Proterozoic ocean. Nature 477, 448–451 (2011).

18.

Bauersachs, T. et al. Nitrogen isotopic fractionation related to progress on dinitrogen fuel and nitrate by cyanobacteria. Limnology and Oceanography 54, 1403–1411 (2009).

19.

Wade, E. Nitrogen Isotope Fractionation and Its Significance in Biogeochemical Processes Occurring in Marine Environments. In: Goldberg ED, Horibe T, Saruhashi Ok (eds). Isotope Marine Chemistry: Uchida Rokakuho (1980).

20.

Brunner, B. et al. Nitrogen isotope results induced by anammox micro organism. Proc. Natl. Acad. Sci. USA 110, 18994 (2013).

21.

Hoch, M. P., Fogel, M. L. & Kirchman, D. L. Isotope fractionation related to ammonium uptake by a marine bacterium. Limnology and Oceanography. 37, 1447–1459 (1992).

22.

McCready., R. G. L., Gould, W. D. & Barendregt, R. W. Nitrogen isotope fractionation in the course of the discount of NO3− to NH4+ by Desulfovibrio sp. Canadian Journal of Microbiology. 29, 231–234 (1993).

23.

Galbraith E. D., Sigman D. M., Robinson R. S. & Pedersen T. F. Chapter 34 – Nitrogen in Previous Marine Environments. Nitrogen within the Marine Atmosphere (2nd Version). Tutorial Press: San Diego, 1497–1535 (2008).

24.

Lam, P. et al. Revising the nitrogen cycle within the Peruvian oxygen minimal zone. Proc. Natl. Acad. Sci. USA 106, 4752 (2009).

25.

Prokopenko, M. G. et al. Nitrogen biking within the sediments of Santa Barbara basin and Jap Subtropical North Pacific: Nitrogen isotopes, diagenesis and doable chemosymbiosis between two lithotrophs (Thioploca and Anammox)—“driving on a glider”. Earth Planet. Sci. Lett. 242, 186–204 (2006).

26.

Sigman, D. M. et al. The twin isotopes of deep nitrate as a constraint on the cycle and funds of oceanic fastened nitrogen. Deep Sea Analysis Half I: Oceanographic Analysis Papers. 56, 1419–1439 (2009).

27.

Rawlings, D. J. Stratigraphic decision of a multiphase intracratonic basin system: the McArthur Basin, northern Australia. Aust. Jour. of Earth. Sci. 46, 703–723 (1999).

28.

Jackson, M. J., Muir, M. D. & Plumb, Ok. A. Geology of the southern McArthur Basin, Northern Territory. Bureau of Mineral Resouces, Geology and Geophysics (1987).

29.

Lindsay, J. F. Basin dynamics and mineralisation, McArthur Basin, northern Australia. Aust. Jour. of Earth. Sci. 48, 703–720 (2001).

30.

Abbott, S. T. & Candy, I. P. Tectonic management on third‐order sequences in a siliciclastic ramp‐fashion basin: An instance from the Roper Superbasin (Mesoproterozoic), northern Australia. Aust. Jour. of Earth. Sci. 47, 637–657 (2000).

31.

Rawlings D. J. et al. The 2002 Southern McArthur Basin Seismic Reflection Survey. Geoscience Australia (2004).

32.

Plumb, Ok. A. & Wellman, P. McArthur Basin, Northern Territory: mapping of deep troughs utilizing gravity and magnetic anomalies. BMR Journal of Australian Geology and Geophysics. 10, 243–251 (1997).

33.

Sheridan, M., Johns, R. D., Johnson, H. D. & Menpes, S. The stratigraphic structure, distribution and hydrocarbon potential of the organic-rich Kyalla and Velkerri shales of the Higher Roper Group (McArthur Basin). The APPEA Journal. 58, 858–864 (2018).

34.

Kendall, B., Creaser, R. A., Gordon, G. W. & Anbar, A. D. Re–Os and Mo isotope systematics of black shales from the Center Proterozoic Velkerri and Wollogorang Formations, McArthur Basin, northern Australia. Geochim. Cosmochim. Acta. 73, 2534–2558 (2009).

35.

Yang, B. et al. Spatial and temporal variation in detrital zircon age provenance of the hydrocarbon-bearing higher Roper Group, Beetaloo Sub-basin, Northern Territory, Australia. Precambrian Res. 304, 140–155 (2018).

36.

Cox, G. M. et al. Basin redox and first productiveness inside the Mesoproterozoic Roper Seaway. Chemical Geology. 440, 101–114 (2016).

37.

Revie, D. Unconventional petroleum sources of the Roper Group, McArthur Basin. Northern Territory Geological Survey: Darwin (2016).

38.

Jackson, M. J., Powell, T. G., Summons, R. E. & Candy, I. P. Hydrocarbon reveals and petroleum supply rocks in sediments as outdated as 1.7 x 109 years. Nature 322, 727–729 (1986).

39.

Shut, D. I. et al. Proterozoic shales fuel performs within the Beetaloo Basin and the Amungee NW-1H discovery. AGES 2017. Alice Springs: Northern Territory Geological Survey. 91–97 (2017).

40.

Munson, T. J. & Revie, D. Stratigraphic subdivision of Velkerri Formation, Roper Group, McArthur Basin, Northern Territory. Northern Territory Geological Survey File 2018–006 (2018).

41.

Warren, J. Ok., George, S. C., Hamilton, P. J. & Tingate, P. Proterozoic Supply Rocks: Sedimentology and Natural Traits of the Velkerri Formation, Northern Territory, Australia. Am. Assoc. Pet. Geol. Bull. 82, 442–443 (1998).

42.

Altabet, M. A. & Francois, R. Sedimentary nitrogen isotopic ratio as a recorder for floor ocean nitrate utilization. International Biogeochemical Cycles eight, 103–116 (1994).

43.

Altabet, M. A. Nitrogen and Carbon Isotopic Tracers of the Supply and Transformation of Particles within the Deep Sea. In: Ittekkot V (ed). Particle Flux within the Ocean. John Wiley: New York, pp 155–171 (1996).

44.

Kienast, S. S., Calvert, S. E. & Pedersen, T. F. Nitrogen isotope and productiveness variations alongside the northeast Pacific margin during the last 120 kyr: Floor and subsurface paleoceanography. Paleoceanography. 17, 1–17 (2002).

45.

Thunell, R. C., Sigman, D. M., Muller-Karger, F., Astor, Y. & Varela, R. Nitrogen isotope dynamics of the Cariaco Basin, Venezuela. International Biogeochemical Cycles 18, 1–13 (2004).

46.

Stüeken, E. E. A take a look at of the nitrogen-limitation speculation for retarded eukaryote radiation: Nitrogen isotopes throughout a Mesoproterozoic basinal profile. Geochim. Cosmochim. Acta. 120, 121–139 (2013).

47.

Koehler, M. C., Stüeken, E. E., Kipp, M. A., Buick, R. & Knoll, A. H. Spatial and temporal tendencies in Precambrian nitrogen biking: A Mesoproterozoic offshore nitrate minimal. Geochim. Cosmochim. Acta. 198, 315–337 (2017).

48.

Casciotti, Ok. L. Inverse kinetic isotope fractionation throughout bacterial nitrite oxidation. Geochim. Cosmochim. Acta. 73, 2061–2076 (2009).

49.

Fulton, J. M., Arthur, M. A. & Freeman, Ok. H. Black Sea nitrogen biking and the preservation of phytoplankton δ15N indicators in the course of the Holocene. International Biogeochemical Cycles. 26 (2012).

50.

Reinhard, C. T. et al. Proterozoic ocean redox and biogeochemical stasis. Proc. Natl. Acad. Sci. USA 110, 5357–5362 (2013).

51.

Haug, G. H. et al. Glacial/interglacial variations in manufacturing and nitrogen fixation within the Cariaco Basin over the last 580 kyr. Paleoceanography. 13, 427–432 (2010).

52.

Casciotti, Ok. L., Sigman, D. M. & Ward, B. B. Linking Range and Secure Isotope Fractionation in Ammonia-Oxidizing Micro organism. Geomicrobiology Journal. 20, 335–353 (2003).

53.

Fuchsman, C. A., Murray, J. W. & Konovalov, S. Ok. Focus and pure secure isotope profiles of nitrogen species within the Black Sea. Marine Chemistry. 111, 90–105 (2008).

54.

Burgess, B. Ok. & Lowe, D. J. Mechanism of Molybdenum Nitrogenase. Chemical Evaluations. 96, 2983–3012 (1996).

55.

Hoffman, B. M., Lukoyanov, D., Yang, Z.-Y., Dean, D. R. & Seefeldt, L. C. Mechanism of Nitrogen Fixation by Nitrogenase: The Subsequent Stage. Chemical Evaluations. 114, 4041–4062 (2014).

56.

Joerger, R. D., Bishop, P. E. & Evans, H. J. Bacterial Different Nitrogen Fixation Techniques. Crucial Evaluations in Microbiology. 16, 1–14 (1988).

57.

Scott, C. & Lyons, T. W. Contrasting molybdenum biking and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks: Refining the paleoproxies. Chemical Geology. 324–325, 19–27 (2012).

58.

Zerkle, A. L., Home, C. H., Cox, R. P. & Canfield, D. E. Steel limitation of cyanobacterial N2 fixation and implications for the Precambrian nitrogen cycle. Geobiology. four, 285–297 (2006).

59.

Glass, J., Axler, R., Chandra, S. & Goldman, C. Molybdenum limitation of microbial nitrogen assimilation in aquatic ecosystems and pure cultures. Frontiers in Microbiology. three, 331 (2012).

60.

Boyle, R. A. et al. Nitrogen cycle feedbacks as a management on euxinia within the mid-Proterozoic ocean. Nature Comms. four, 1533 (2013).

61.

Shen, Y., Canfield, D. E. & Knoll, A. H. Center Proterozoic ocean chemistry: Proof from the McArthur Basin, northern Australia. Amer. Jour. of Sci. 302, 81–109 (2002).

62.

Jarrett, A. J. et al. Microbial assemblage and palaeoenvironmental reconstruction of the 1.38 Ga Velkerri Formation, McArthur Basin, northern Australia. Geobiology. 00, 1–21 (2019).

63.

Lyons, T. W., Anbar, A. D., Severmann, S., Scott, C. & Gill, B. C. Monitoring Euxinia within the Historic Ocean: A Multiproxy Perspective and Proterozoic Case Research. Annual Overview of Earth and Planetary Sciences. 37, 507–534 (2009).

64.

Tribovillard, N., Algeo, T. J., Lyons, T. & Riboulleau, A. Hint metals as paleoredox and paleoproductivity proxies: An replace. Chemical Geology. 232, 12–32 (2006).

65.

Mizukami, T., Kaiho, Ok. & Oba, M. Vital modifications in land vegetation and oceanic redox throughout the Cretaceous/Paleogene boundary. Palaeogeography, Palaeoclimatology, Palaeoecology. 369, 41–47 (2013).

66.

Zerkle, A. L. & Mikhail, S. The geobiological nitrogen cycle: From microbes to the mantle. Geobiology. 15, 343–352 (2017).


Supply hyperlink
asubhan

wordpress autoblog

amazon autoblog

affiliate autoblog

wordpress web site

web site growth

Show More

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Close