Environment friendly recycling of vitamins in fashionable and previous hypersaline environments


Sternai, P. et al. Magmatic pulse pushed by sea-level modifications related to the Messinian salinity disaster. Nat. Geosci. 10, 783–789 (2017).


Daffonchio, D. et al. Stratified prokaryote community within the oxic–anoxic transition of a deep-sea halocline. Nature 440, 203–207 (2006).


Hoehler, T. M., Bebout, B. M. & Des Marais, D. J. The function of microbial mats within the manufacturing of diminished gases on the early Earth. Nature 412, 324–327 (2001).


Oren, A. Bioenergetic points of halophilism. Microbiol. Mol. Biol. Rev. 63, 334–348 (1999).


Canfield, D. E. & Des Marais, D. J. Biogeochemical cycles of carbon, sulfur, and free oxygen in a microbial mat. Geochim. Cosmochim. Acta 57, 3971–3984 (1993).


Ley, R. E. et al. Surprising variety and complexity of the Guerrero Negro hypersaline microbial mat. Appl. Environ. Microbiol. 72, 3685–3695 (2006).


Wieland, A., Zopfi, J., Benthien, M. & Kühl, M. Biogeochemistry of an iron-rich hypersaline microbial mat (Camargue, France). Microb. Ecol. 49, 34–49 (2005).


Warren, J. Okay. Evaporites by means of time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits. Earth-Sci. Rev. 98, 217–268 (2010).


Capone, D. G., Bronk, D. A., Mulholland, M. R. & Carpenter, E. J. (eds) Nitrogen within the marine atmosphere (Educational Press, New York, 2008).


Bebout, B. M., Paerl, H. W., Bauer, J. E., Canfield, D. E. & Des Marais, D. J. In Microbial Mats: Construction, Growth and Environmental Significance, 265–271 (Springer, Berlin, 1994).


Omoregie, E. O., Crumbliss, L. L., Bebout, B. M. & Zehr, J. P. Comparability of diazotroph group construction in Lyngbya sp. and Microcoleus chthonoplastes dominated microbial mats from Guerrero Negro, Baja, Mexico. FEMS Microbiol. Ecol. 47, 305–308 (2004).


Joint, I., Henriksen, P., Garde, Okay. & Riemann, B. Major manufacturing, nutrient assimilation and microzooplankton grazing alongside a hypersaline gradient. FEMS Microbiol. Ecol. 39, 245–257 (2002).


Yannarell, A. C. & Paerl, H. W. Results of salinity and lightweight on natural carbon and nitrogen uptake in a hypersaline microbial mat. FEMS Microbiol. Ecol. 62, 345–353 (2007).


Sigman, D., Karsh, Okay. & Casciotti, Okay. In Encyclopedia of Ocean Sciences, 40–54 (Educational Press, New York, 2009).


Ohkouchi, N., Ogawa, N. O., Chikaraishi, Y., Tanaka, H. & Wada, E. Biochemical and physiological bases for the usage of carbon and nitrogen isotopes in environmental and ecological research. Prog. Earth Planet. Sci. 2, 1 (2015).


Ohkouchi, N. et al. Biogeochemical processes within the saline meromictic Lake Kaiike, Japan: implications from molecular isotopic evidences of photosynthetic pigments. Environ. Microbiol. 7, (1009–1016 (2005).


Higgins, M. B., Robinson, R. S., Carter, S. J. & Pearson, A. Proof from chlorin nitrogen isotopes for alternating nutrient regimes within the Japanese Mediterranean Sea. Earth. Planet. Sci. Lett. 290, 102–107 (2010).


Isaji, Y. et al. Various responses to Indian monsoons in the course of the previous 220 kyr recorded in deep‐sea sediments in internal and outer areas of the Gulf of Aden. J. Geophys. Res. Oceans 120, 7253–7270 (2015).


Chicarelli, M. I., Hayes, J. M., Popp, B. N., Eckardt, C. B. & Maxwell, J. R. Carbon and nitrogen isotopic compositions of alkyl porphyrins from the Triassic Serpiano oil shale. Geochim. Cosmochim. Acta 57, 1307–1311 (1993).


Ohkouchi, N., Kashiyama, Y., Kuroda, J., Ogawa, N. O. & Kitazato, H. The significance of diazotrophic cyanobacteria as major producers throughout Cretaceous Oceanic Anoxic Occasion 2. Biogeosciences three, 467–478 (2006).


Junium, C. Okay., Freeman, Okay. H. & Arthur, M. A. Controls on the stratigraphic distribution and nitrogen isotopic composition of zinc, vanadyl and free base porphyrins by means of Oceanic Anoxic Occasion 2 at Demerara Rise. Org. Geochem. 80, 60–71 (2015).


Higgins, M. B., Robinson, R. S., Husson, J. M., Carter, S. J. & Pearson, A. Dominant eukaryotic export manufacturing throughout ocean anoxic occasions displays the significance of recycled NH4+. Proc. Natl. Acad. Sci. USA 109, 2269–2274 (2012).


Isaji, Y. et al. Organic and bodily modification of carbonate system parameters alongside the salinity gradient in shallow hypersaline photo voltaic salterns in Trapani, Italy. Geochim. Cosmochim. Acta 208, 354–367 (2017).


Oren, A. Range of halophilic microorganisms: environments, phylogeny, physiology, and functions. J. Ind. Microbiol. Biotechnol. 28, 56–63 (2002).


Higgins, M. B. et al. Paleoenvironmental implications of taxonomic variation amongst δ15N values of chloropigments. Geochim. Cosmochim. Acta 75, 7351–7363 (2011).


Beaumont, V. I., Jahnke, L. L. & Des Marais, D. J. Nitrogen isotopic fractionation within the synthesis of photosynthetic pigments in Rhodobacter capsulatus and Anabaena cylindrica. Org. Geochem. 31, 1075–1085 (2000).


Sachs, J. P., Repeta, D. J. & Goericke, R. Nitrogen and carbon isotopic ratios of chlorophyll from marine phytoplankton. Geochim. Cosmochim. Acta 63, 1431–1441 (1999).


Brunner, B. et al. Nitrogen isotope results induced by anammox micro organism. Proc. Natl. Acad. Sci. USA 110, 18994–18999 (2013).


Guerrero, M. A. & Jones, R. D. Photoinhibition of marine nitrifying micro organism. I. Wavelength-dependent response. Mar. Ecol. Prog. Ser., 183–192 (1996).


Smith, J. M., Chavez, F. P. & Francis, C. A. Ammonium uptake by phytoplankton regulates nitrification within the sunlit ocean. PLoS One 9, e108173 (2014).


Zehr, J. P. & Ward, B. B. Nitrogen biking within the ocean: new views on processes and paradigms. Appl. Environ. Microbiol. 68, 1015–1024 (2002).


Hoch, M. P., Fogel, M. L. & Kirchman, D. L. Isotope fractionation related to ammonium uptake by a marine bacterium. Limnol. Oceanogr. 37, 1447–1459 (1992).


Vo, J., Inwood, W., Hayes, J. M. & Kustu, S. Mechanism for nitrogen isotope fractionation throughout ammonium assimilation by Escherichia coli Okay12. Proc. Natl. Acad. Sci. USA 110, 8696–8701 (2013).


Liu, Okay.-Okay. et al. Focus dependent nitrogen isotope fractionation throughout ammonium uptake by phytoplankton below an algal bloom situation within the Danshuei estuary, northern Taiwan. Mar. Chem. 157, 242–252 (2013).


Wada, E. Nitrogen isotope fractionation and its significance in biogeochemical processes occurring in marine environments. Isotope marine chemistry, 375–398 (1980).


Pinckney, J. L. & Paerl, H. W. Anoxygenic photosynthesis and nitrogen fixation by a microbial mat group in a bahamian hypersaline lagoon. Appl. Environ. Microbiol. 63, 420–426 (1997).


de Wit, R., I. Falcón, L. & Charpy-Roubaud, C. Heterotrophic dinitrogen fixation (acetylene discount) in phosphate-fertilised Microcoleus chthonoplastes microbial mat from the hypersaline inland lake ‘la Salada de Chiprana’ (NE Spain). Hydrobiologia 534, 245–253 (2005).


Li, L., Lollar, B. S., Li, H., Wortmann, U. G. & Lacrampe-Couloume, G. Ammonium stability and nitrogen isotope fractionations for–NH3(aq)–NH3(fuel) techniques at 20–70 °C and pH of two–13: Functions to habitability and nitrogen biking in low-temperature hydrothermal techniques. Geochim. Cosmochim. Acta 84, 280–296 (2012).


Hsü, Okay., Ryan, W. & Cita, M. Late Miocene desiccation of the Mediterranean. Nature 242, 240–244 (1973).


Roveri, M. et al. The Messinian Salinity Disaster: Previous and way forward for a fantastic problem for marine sciences. Mar. Geol. 352, 25–58 (2014).


Manzi, V. et al. Excessive-frequency cyclicity within the Mediterranean Messinian evaporites: Proof for solar-lunar local weather forcing. J. Sed. Res. 82, 991–1005 (2012).


Collister, J. W. & Hayes, J. M. In Geochemical, Biogeochemical, and Sedimentological Research of the Inexperienced River Formation, Wyoming, Utah and Colorado., C1–C16 (U.S. Geological Survey Bulletin, Washington, 1991).


Lugli, S., Manzi, V., Roveri, M. & Schreiber, B. C. The Major Decrease Gypsum within the Mediterranean: A brand new facies interpretation for the primary stage of the Messinian salinity disaster. Palaeogeogr., Palaeoclimatol., Palaeoecol. 297, 83–99 (2010).


Natalicchio, M. et al. An archaeal biomarker document of paleoenvironmental change throughout the onset of the Messinian salinity disaster within the absence of evaporites (Piedmont Basin, Italy). Org. Geochem. 113, 242–253 (2017).


Dela Pierre, F. et al. Are the big filamentous microfossils preserved in Messinian gypsum colorless sulfide-oxidizing micro organism? Geology 43, 855–858 (2015).


Panieri, G. et al. Ribosomal RNA gene fragments from fossilized cyanobacteria recognized in major gypsum from the late Miocene, Italy. Geobiology eight, 101–111 (2010).


Warren, J. Okay. Evaporites: A geological compendium (Springer, New York, 2016).


Ohneiser, C. et al. Antarctic glacio-eustatic contributions to late Miocene Mediterranean desiccation and reflooding. Nat. Commun 6, 8765 (2015).


Cerling, T. E. et al. World vegetation change by means of the Miocene/Pliocene boundary. Nature 389, 153–158 (1997).


Herbert, T. D. et al. Late Miocene international cooling and the rise of contemporary ecosystems. Nat. Geosci. 9, 843–849 (2016).


Bolton, C. T. & Stoll, H. M. Late Miocene threshold response of marine algae to carbon dioxide limitation. Nature 500, 558–562 (2013).


Isobe, Okay. et al. Analytical methods for quantifying 15N/14N of nitrate, nitrite, whole dissolved nitrogen and ammonium in environmental samples utilizing a fuel chromatograph outfitted with a quadrupole mass spectrometer. Microbes Environ. 26, 46–53 (2011).


Nishizawa, M. et al. Nitrification-driven types of nitrogen metabolism in microbial mat communities thriving alongside an ammonium-enriched subsurface geothermal stream. Geochim. Cosmochim. Acta 113, 152–173 (2013).


Sigman, D. M. et al. A bacterial technique for the nitrogen isotopic evaluation of nitrate in seawater and freshwater. Anal. Chem. 73, 4145–4153 (2001).


Casciotti, Okay. L., Sigman, D. M., Hastings, M. G., Böhlke, J. & Hilkert, A. Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater utilizing the denitrifier technique. Anal. Chem 74, 4905–4912 (2002).


Holmes, R. M., McClelland, J. W., Sigman, D. M., Fry, B. & Peterson, B. J. Measuring 15N–NH4+ in marine, estuarine and recent waters: An adaptation of the ammonia diffusion technique for samples with low ammonium concentrations. Mar. Chem. 60, 235–243 (1998).


Stark, J. M. & Hart, S. C. Diffusion approach for making ready salt options, Kjeldahl digests, and persulfate digests for nitrogen-15 evaluation. Soil Sci. Soc. Am. J. 60, 1846–1855 (1996).


Holmes, R. M., Aminot, A., Kérouel, R., Hooker, B. A. & Peterson, B. J. A easy and exact technique for measuring ammonium in marine and freshwater ecosystems. Can. J. Fish. Aquat. Sci. 56, 1801–1808 (1999).


Solorzano, L. Willpower of ammonia in pure waters by the phenolhypochlorite technique. Limnol. Oceanogr. 14, 799–801 (1969).


Ogawa, N. O., Nagata, T., Kitazato, H. & Ohkouchi, N. In Earth, Life, and Isotopes, 339–353 (Kyoto College Press, Kyoto, 2010).


Manzi, V., Lugli, S., Roveri, M. & Schreiber, B. C. A brand new facies mannequin for the Higher Gypsum of Sicily (Italy): chronological and palaeoenvironmental constraints for the Messinian salinity disaster within the Mediterranean. Sedimentology 56, 1937–1960 (2009).


Krijgsman, W., Hilgen, F. J., Raffi, I., Sierro, F. J. & Wilson, D. S. Chronology, causes and development of the Messinian salinity disaster. Nature 400, 652–655 (1999).


Decima, A. & Wezel, F. C. Late Miocene evaporites of the central Sicilian basin, Italy. Preliminary Stories of the Deep Sea Drilling Mission 13, 1234–1241 (1973).


Lugli, S., Schreiber, B. C. & Triberti, B. Big polygons within the Realmonte mine (Agrigento, Sicily): proof for the desiccation of a Messinian halite basin. J. Sed. Res. 69, 764–771 (1999).


Yoshimura, T. et al. An X-ray spectroscopic perspective on Messinian evaporite from Sicily: Sedimentary materials, aspect distributions, and chemical environments of S and Mg. Geochem. Geophys. Geosyst. 17, 1383–1400 (2016).


Kashiyama, Y., Kitazato, H. & Ohkouchi, N. An improved technique for isolation and purification of sedimentary porphyrins by high-performance liquid chromatography for compound-specific isotopic evaluation. J. Chromatogr. A 1138, 73–83 (2007).

Supply hyperlink

wordpress autoblog

amazon autoblog

affiliate autoblog

wordpress web site

web site improvement

Show More

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *