Flame-retardant plant thermoplastics immediately ready by single ionic liquid substitution


Edgar KJ, Buchanan CM, Debenham JS, Rundquist PA, Seiler BD, Shelton MC, et al. Advances in cellulose ester efficiency and software. Prog Polym Sci. 2001;26:1605–88.


Klemm D, Heublein B, Fink HP, Bohn A. Cellulose: fascinating biopolymer and sustainable uncooked materials. Angew Chem Int Ed. 2005;44:3358–93.


Mekonnen T, Mussone P, Khalil H, Bressler D. Progress in bio-based plastics and plasticizing modifications. J Mater Chem A. 2013;1:13379–98.


Kosaka PM, Kawano Y, Petri HM, Fantini MCA, Petri DFS. Construction and properties of composites of polyethylene or maleated polyethylene and cellulose or cellulose esters. J Appl Polym Sci. 2007;103:402–11.


Aoki D, Nishio Y. Phosphorylated cellulose propionate derivatives as thermoplastic flame resistant/retardant supplies: affect of regioselective phosphorylation on their thermal degradation conduct. Cellulose. 2010;17:963–76.


Nishita R, Kuroda Ok, Ota S, Endo T, Suzuki S, Ninomiya Ok, et al. Flame-retardant thermoplastics derived from plant cell wall polymers by single ionic liquid substitution. New J Chem. 2019;43:2057–64.


Fukaya Y, Hayashi Ok, Wada M, Ohno H. Cellulose dissolution with polar ionic liquids below gentle situations: required components for anions. Inexperienced Chem. 2008;10:44–46.


Kuroda Ok, Fukaya Y, Ohno H. Direct HPILC evaluation of cellulose depolymerisation in ionic liquids. Anal Strategies. 2013;5:3172–6.


Wu J, Bai J, Xue Z, Liao Y, Zhou X, Xie X. Perception into glass transition of cellulose based mostly on direct thermal processing after plasticization by ionic liquid. Cellulose. 2015;22:89–99.


Chen J, Chen X, Su M, Ye J, Hong J, Yang Z. Direct manufacturing of all-wood plastics by kneading in ionic liquids/DMSO. Chem Eng J. 2015;279:136–42.


Miyafuji H, Fujiwara Y. Fireplace resistance of wooden handled with numerous ionic liquids. Holzforschung. 2013;67:787–93.


Kim JS, Lee YY, Kim TH. A overview on alkaline pretreatment know-how for bioconversion of lignocellulosic biomass. Bioresour Technol. 2016;199:42–48.


Chakar FS, Ragauskas AJ. Evaluate of present and future softwood kraft lignin course of chemistry. Ind Crops Prod. 2004;20:131–41.


Hassan ML, El-Wakil NA, Sefain MZ. Thermoplasticization of bagasse by cyanoethylation. J Appl Polym Sci. 2001;79:1965–78.


Lu X, Zhang MQ, Rong MZ, Shi G, Yang GC. All-plant fiber composites I. Unidirectional sisal fiber bolstered benzylated wooden. Polym Compos. 2002;23:624–33.


Wang Z, Yokoyama T, Chang HM, Matsumoto Y. Dissolution of beech and spruce milled woods in LiCl/DMSO. Agric J Meals Chem. 2009;57:6167–70.


Lu F, Ralph J. Non-degradative dissolution and acetylation of ball-milled plant cell partitions: high-resolution solution-state NMR. Plant J. 2003;35:535–44.


Kilpeläinen I, Xie H, King A, Granstrom M, Heikkinen S, Argyropoulos DS. Dissolution of wooden in ionic liquids. J Agric Meals Chem. 2007;55:9142–eight.


Fort DA, Remsing RC, Swatloski RP, Moyna P, Moyna G, Rogers RD. Can ionic liquids dissolve wooden? Processing and evaluation of lignocellulosic supplies with 1-n-butyl-Three-methylimidazolium chloride. Inexperienced Chem. 2007;9:63–69.


Brandt A, Gräsvik J, Hallett JP, Welton T. Deconstruction of lignocellulosic biomass with ionic liquids. Inexperienced Chem. 2013;15:550–83.


Chen MJ, Shi QS. Remodeling sugarcane bagasse into bioplastics through homogeneous modification with phthalic anhydride in ionic liquid. ACS Maintain Chem Eng. 2015;Three:2510–5.


Hon DN-S. Chemical modification of lignocellulosic supplies. 1st ed. CRC Press; Boca Raton, U.S. 1995.


Salanti A, Zoia L, Tolppa EL, Orlandi M. Chromatographic detection of lignin–carbohydrate complexes in annual crops by derivatization in ionic liquid. Biomacromolecules. 2012;13:445–54.


Thiebaud S, Borredon ME. Solvent-free wooden esterification with fatty acid chlorides. Bioresour Technol. 1995;52:169–73.


Shiraishi N, Yoshioka M. Plasticization of wooden by acetylation with trifluoroacetic acid pretreatment. Sen’i Gakkaishi. 1986;42:84–93.


Kuroda Ok, Fukaya Y, Yamada T, Ohno H. Molecular weight distributions of polysaccharides and lignin extracted from plant biomass with a polar ionic liquid analysed with no derivatisation course of. Anal Strategies. 2015;7:1719–26.


Kuroda Ok, Kunimura H, Fukaya Y, Nakamura N, Ohno H. 1H NMR analysis of polar and nondeuterated ionic liquids for selective extraction of cellulose and xylan from wheat bran. ACS Maintain Chem Eng. 2014;2:2204–10.


Vo HT, Kim YJ, Jeon EH, Kim CS, Kim HS, Lee H. Ionic-liquid-derived, water-soluble ionic cellulose. Chem Eur J. 2012;18:9019.


Sakai H, Kuroda Ok, Tsukegi T, Ogoshi T, Ninomiya Ok, Takahashi Ok. Butylated lignin as a compatibilizing agent for polypropylene–based mostly carbon fiber-reinforced plastics. Polym J. 2018;50:997–1002.


Suzuki S, Shibata Y, Hirose D, Endo T, Ninomiya Ok, Kakuchi R, et al. Cellulose triacetate synthesis through one-pot organocatalytic transesterification and delignification of pretreated bagasse. RSC Adv. 2018;eight:21768–76.


Solar N, Rahman M, Qin Y, Maxim ML, Rodríguez H, Rogers RD. Full dissolution and partial delignification of wooden in ionic liquid 1-ethyl-Three-methylimidazolium acetate. Inexperienced Chem. 2009;11:646–55.


Li W, Solar N, Stoner B, Jiang X, Lu X, Rogers RD. Speedy dissolution of lignocellulosic biomass in ionic liquids utilizing temperatures above the glass transition of lignin. Inexperienced Chem. 2001;13:2038–47.


Suflet DM, Chitanu GC, Popa VI. Phosphorylation of polysaccharides: New outcomes on synthesis and characterisation of phosphorylated cellulose. React Funct Polym. 2006;66:1240–9.


Campbell JLE, Johnson KE, Torkelson JR. Infrared and variable-temperature 1H-NMR investigations of ambient-temperature ionic liquids ready by response of HCl with 1-ethyl-Three-methyl-1H-imidazolium chloride. Inorg Chem. 1994;33:3340–5.


Stevens R, van Es DS, Bezemer R, Kranenbarg A. The construction–exercise relationship of fireplace retardant phosphorus compounds in wooden. Polym Degrad Stab. 2006;91:832–41.


van Krevelen DW. Some primary features of flame resistance of polymeric supplies. Polymer. 1975;16:615–20.

Supply hyperlink

wordpress autoblog

amazon autoblog

affiliate autoblog

wordpress web site

web site improvement

Show More

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *