Chemistry

Gasoline section synthesis of [4]-helicene


1.

Chen, C.-F. & Shen, Y. Helicene Chemistry: From Synthesis to Purposes Ch. 1 (Springer, 2016).

2.

Kato, Ok., Segawa, Y., Scott, L. T. & Itami, Ok. A quintuple [6]helicene with a corannulene core as a C5 -symmetric propeller-shaped pi-system. Angew. Chem. Int. Ed. 57, 1337–1341 (2018).

Three.

Bruyère, A. et al. Intermixing of chirality and native construction within the second harmonic technology response of dibenzo[c]acridine helicene-like molecule skinny movies. J. Phys. Chem. C. 121, 24759–24765 (2017).

four.

Aillard, P., Voituriez, A. & Marinetti, A. Helicene-like chiral auxiliaries in uneven catalysis. Dalton. Trans. 43, 15263–15278 (2014).

5.

Hoffmann, N. Photochemical reactions utilized to the synthesis of helicenes and helicene-like compounds. J. Photochem. Photobiol. C. 19, 1–19 (2014).

6.

Groen, M. B. & Wynberg, H. Optical properties of some heterohelicenes. Absolute configuration. J. Am. Chem. Soc. 93, 2968–2974 (1971).

7.

Samuel, Ok. Basic facets and up to date developments in optical rotatory dispersion and round dichroism, F. Ciardelli and P. Salvadori, Eds, Heyden and Son, Ltd., London, New York, 1973. J. Poly. Sci., Poly. Lett. Ed. 12, 360–361 (1974).

eight.

Chen, J. P., Gao, J. P. & Wang, Z. Y. Lengthy-distance chirality switch in polymerization of isocyanides bearing a distant chiral group. Polym. Int. 44, 83–87 (1997).

9.

Matsumoto, A. et al. Reversal of the sense of enantioselectivity between 1- and 2-aza[6]helicenes used as chiral inducers of uneven autocatalysis. Org. Biomol. Chem. 15, 1321–1324 (2017).

10.

Demmer, C. S., Voituriez, A. & Marinetti, A. Catalytic makes use of of helicenes displaying phosphorus features. C. R. Chim. 20, 860–879 (2017).

11.

Koetzner, L., Webber, M. J., Martinez, A., De Fusco, C. & Record, B. Uneven catalysis on the nanoscale: the organocatalytic strategy to helicenes. Angew. Chem. Int. Ed. 53, 5202–5205 (2014).

12.

Shen, Y. & Chen, C. F. Helicenes: synthesis and purposes. Chem. Rev. 112, 1463–1535 (2012).

13.

Cahn, R. S., Ingold, C. & Prelog, V. Specification of molecular chirality. Angew. Chem. Int. Ed. 5, 385–415 (1966).

14.

Grimme, S. & Peyerimhoff, S. D. Theoretical research of the constructions and racemization limitations of [n]helicenes (n = Three–6, eight). Chem. Phys. 204, 411–417 (1996).

15.

Janke, R. H., Haufe, G., Würthwein, E.-U. & Borkent, J. H. Racemization limitations of helicenes: a computational research. J. Am. Chem. Soc. 118, 6031–6035 (1996).

16.

Barroso, J. et al. Revisiting the racemization mechanism of helicenes. Chem. Commun. (Camb.). 54, 188–191 (2018).

17.

Meisenheimer, J. & Witte, Ok. Discount von 2-nitronaphtalin. Eur. J. Inorg. Chem. 36, 4153–4164 (1903).

18.

Weitzenböck, R. & Klingler, A. Synthese der isomeren kohlenwasserstoffe 1, 2–5, 6-dibenzanthracen und Three, four–5, 6-dibenzphenanthren. Mon. für Chem. und Verwandte-. Teil. And. Wiss. 39, 315–323 (1918).

19.

Newman, M. S. & Lednicer, D. The synthesis and determination of hexahelicene1. J. Am. Chem. Soc. 78, 4765–4770 (1956).

20.

Scholz, M., Mühlstädt, M. & Dietz, F. Chemie angeregter zustände. I. Mitt. Die richtung der photocyclisierung naphthalinsubstituierter thylene. Tetrahedron Lett. eight, 665–668 (1967).

21.

Liu, L. & Katz, T. J. Easy preparation of a helical quinone. Tetrahedron Lett. 31, 3983–3986 (1990).

22.

Willmore, N. D., Liu, L. & Katz, T. J. A Diels–Alder path to [5]-and [6]-helicenes. Angew. Chem. Int. Ed. 31, 1093–1095 (1992).

23.

Willmore, N. D., Hoic, D. A. & Katz, T. J. Diels-Alder reactions of α-substituted styrenes with p-benzoquinone. J. Org. Chem. 59, 1889–1891 (1994).

24.

Katz, T. J. et al. An environment friendly synthesis of functionalized helicenes. J. Am. Chem. Soc. 119, 10054–10063 (1997).

25.

Fox, J. M., Goldberg, N. R. & Katz, T. J. Environment friendly synthesis of functionalized [7]helicenes. J. Org. Chem. 63, 7456–7462 (1998).

26.

Nuckolls, C., Katz, T. J., Katz, G., Collings, P. J. & Castellanos, L. Synthesis and aggregation of a conjugated helical molecule. J. Am. Chem. Soc. 121, 79–88 (1999).

27.

Paruch, Ok. et al. First friedel−Crafts diacylation of a phenanthrene as the idea for an environment friendly synthesis of nonracemic [7] helicenes. J. Org. Chem. 65, 7602–7608 (2000).

28.

Songis, O. et al. A flexible synthesis of functionalized pentahelicenes. J. Org. Chem. 75, 6889–6899 (2010).

29.

Caeiro, J., Peña, D., Cobas, A., Pérez, D. & Guitián, E. Uneven catalysis within the [2 + 2 + 2] cycloaddition of arynes and alkynes: Enantioselective synthesis of a pentahelicene. Adv. Synth. Catal. 348, 2466–2474 (2006).

30.

Sehnal, P. et al. An organometallic path to lengthy helicenes. Proc. Natl Acad. Sci. USA 106, 13169–13174 (2009).

31.

Stará, I. G. et al. Transition metallic catalysed synthesis of tetrahydro derivatives of [5]-, [6]- and [7] helicene. Tetrahedron Lett. 40, 1993–1996 (1999).

32.

Teplý, F. et al. Synthesis of [5]-, [6]-, and [7] helicene through Ni (zero)-or Co (I)-catalyzed isomerization of fragrant cis, cis-dienetriynes. J. Am. Chem. Soc. 124, 9175–9180 (2002).

33.

Kamikawa, Ok., Takemoto, I., Takemoto, S. & Matsuzaka, H. Synthesis of helicenes using palladium-catalyzed double C−H arylation response. J. Org. Chem. 72, 7406–7408 (2007).

34.

Xue, X. & Scott, L. T. Thermal cyclodehydrogenations to kind six-membered rings: cyclizations of [5] helicenes. Org. Lett. 9, 3937–3940 (2007).

35.

Collins, S. Ok., Grandbois, A., Vachon, M. P. & Cote, J. Preparation of helicenes by way of olefin metathesis. Angew. Chem. Int. Ed. 45, 2923–2926 (2006).

36.

McAtee, C. C., Riehl, P. S. & Schindler, C. S. Polycyclic fragrant hydrocarbons through iron (iii)-catalyzed carbonyl–olefin metathesis. J. Am. Chem. Soc. 139, 2960–2963 (2017).

37.

Harrowven, D. C., Man, I. L. & Nanson, L. Environment friendly phenanthrene, helicene, and azahelicene syntheses. Angew. Chem. Int. Ed. 45, 2242–2245 (2006).

38.

Harrowven, D. C., Nunn, M. I. & Fenwick, D. R. [5] helicenes by iterative radical cyclisations to arenes. Tetrahedron Lett. 43, 3189–3191 (2002).

39.

Harrowven, D. C., Nunn, M. I. & Fenwick, D. R. [5] helicenes by tandem radical cyclisation. Tetrahedron Lett. 43, 7345–7347 (2002).

40.

Teply, F. et al. A handy path to 2-hydroxy- and a pair of,15-dihydroxyhexahelicene. Eur. J. Org. Chem. 2007, 4244–4250 (2007).

41.

Murase, T., Suto, T. & Suzuki, H. Azahelicenes from the oxidative photocyclization of boron hydroxamate complexes. Chem. – Asian J. 12, 726–729 (2017).

42.

Zhao, L. et al. Pyrene synthesis in circumstellar envelopes and its function within the formation of 2D nanostructures. Nat. Astron. 2, 413–419 (2018).

43.

Parker, D. S. N. et al. Low temperature formation of naphthalene and its function within the synthesis of PAHs (polycyclic fragrant hydrocarbons) within the interstellar medium. Proc. Natl Acad. Sci. USA 109, 53–58 (2012).

44.

Mebel, A. M., Landera, A. & Kaiser, R. I. Formation mechanisms of naphthalene and indene: From the interstellar medium to combustion flames. J. Phys. Chem. A 121, 901–926 (2017).

45.

Mebel, A., Lin, M., Yu, T. & Morokuma, Ok. Theoretical research of potential vitality floor and thermal fee constants for the C6H5 + H2 and C6H6 + H reactions. J. Phys. Chem. A 101, 3189–3196 (1997).

46.

Kislov, V. V., Islamova, N. I., Kolker, A. M., Lin, S. H. & Mebel, A. M. Hydrogen abstraction acetylene addition and Diels-Alder mechanisms of PAH formation: an in depth research utilizing first rules calculations. J. Chem. Principle Comput. 1, 908–924 (2005).

47.

Frenklach, M., Clary, D. W., Gardiner, W. C. & Stein, S. E. Detailed kinetic modeling of soot formation in shock-tube pyrolysis of acetylene. Proc. Combust. Inst. 20, 887–901 (1985).

48.

Frenklach, M. & Wang, H. Detailed modeling of soot particle nucleation and progress. Proc. Combust. Inst. 23, 1559–1566 (1991).

49.

Parker, D. S., Kaiser, R. I., Troy, T. P. & Ahmed, M. Hydrogen abstraction/acetylene addition revealed. Angew. Chem. Int. Ed. 53, 7740–7744 (2014).

50.

Parker, D. S. N. et al. Sudden chemistry from the response of naphthyl and acetylene at combustion-like temperatures. Angew. Chem. Int. Ed. 54, 5421–5424 (2015).

51.

Yang, T. et al. HACA’s heritage: A free-radical pathway to phenanthrene in circumstellar envelopes of asymptotic big department stars. Angew. Chem. Int. Ed. 56, 4515–4519 (2017).

52.

Cherchneff, I. The inside wind of IRC + 10216 revisited: New unique chemistry and diagnostic for mud condensation in carbon stars. A & A 545, A12/11–A12/14 (2012).

53.

Marsh, N. D. et al. Newly recognized merchandise of benzene droplet combustion: Polycyclic fragrant hydrocarbons of three to 10 rings. Polycycl. Aromat. Compd. 25, 227–244 (2005).

54.

Comandini, A., Malewicki, T. & Brezinsky, Ok. Chemistry of polycyclic fragrant hydrocarbons formation from phenyl radical pyrolysis and response of phenyl and acetylene. J. Phys. Chem. A 116, 2409–2434 (2012).

55.

Zhang, F. et al. A VUV photoionization research of the formation of the indene molecule and its isomers. J. Phys. Chem. Lett. 2, 1731–1735 (2011).

56.

Qi, F. Combustion chemistry probed by synchrotron VUV photoionization mass spectrometry. Proc. Combust. Inst. 34, 33–63 (2013).

57.

Cool, T. A. et al. Photoionization mass spectrometer for research of flame chemistry with a synchrotron mild supply. Rev. Sci. Instrum. 76, 094102 (2005).

58.

Zhao, L. et al. VUV photoionization research of the formation of the only polycyclic fragrant hydrocarbon: Naphthalene (C10H8). J. Phys. Chem. Lett. 9, 2620–2626 (2018).

59.

Guan, Q. et al. The properties of a micro-reactor for the research of the unimolecular decomposition of huge molecules. Int. Rev. Phys. Chem. 33, 447–487 (2014).

60.

Curtiss, L. A., Raghavachari, Ok., Redfern, P. C., Rassolov, V. & Pople, J. A. Gaussian-Three (G3) principle for molecules containing first and second-row atoms. J. Chem. Phys. 109, 7764–7776 (1998).

61.

Baboul, A. G., Curtiss, L. A., Redfern, P. C. & Raghavachari, Ok. Gaussian-Three principle utilizing density purposeful geometries and zero-point energies. J. Chem. Phys. 110, 7650–7657 (1999).

62.

Curtiss, L. A., Raghavachari, Ok., Redfern, P. C., Baboul, A. G. & Pople, J. A. Gaussian-Three principle utilizing coupled cluster energies. Chem. Phys. Lett. 314, 101–107 (1999).

63.

Frisch, M. J. et al. Gaussian 09, revision A.02 (Gaussian Inc., CT) (2009).

64.

Werner, H. J. et al. MOLPRO, model 2010.1, http://www.molpro.web. (College School Cardiff Consultants Ltd., UK, 2010).


Supply hyperlink
asubhan

wordpress autoblog

amazon autoblog

affiliate autoblog

wordpress web site

web site improvement

Show More

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Close