Chemistry

Graphene Oxide will increase mammalian spermatozoa fertilizing potential by extracting ldl cholesterol from their membranes and selling capacitation


1.

Li, Z. et al. Area and temperature dependence of intrinsic diamagnetism in graphene: Principle and experiment. Phys. Rev. B 91, 094429 (2015).

2.

Yoo, J. M., Kang, J. H. & Hong, B. H. Graphene-based nanomaterials for versatile imaging research. Chem. Soc. Rev. 44, 4835–4852 (2015).

three.

Bartelmess, J., Quinn, S. J. & Giordani, S. Carbon nanomaterials: multi-functional brokers for biomedical fluorescence and Raman imaging. Chem. Soc. Rev. 44, 4672–4698 (2015).

four.

Miao, W. et al. Picture-guided synergistic photothermal remedy utilizing photoresponsive imaging agent-loaded graphene-based nanosheets. J. Management. Launch 211, 28–36 (2015).

5.

Chen, D., Dougherty, C. A., Zhu, Ok. & Hong, H. Theranostic purposes of carbon nanomaterials in most cancers: Give attention to imaging and cargo supply. J. Management. Launch 210, 230–245 (2015).

6.

Orecchioni, M., Cabizza, R., Bianco, A. & Delogu, L. G. Graphene as Most cancers Theranostic Device: Progress and Future Challenges. Theranostics 5, 710–723 (2015).

7.

Liu, J., Dong, J., Zhang, T. & Peng, Q. Graphene-based nanomaterials and their potentials in superior drug supply and most cancers remedy. J. Management. Launch 286, 64–73 (2018).

eight.

Ding, X., Liu, H. & Fan, Y. Graphene-Based mostly Supplies in Regenerative Medication. Adv. Healthc. Mater. four, 1451–1468 (2015).

9.

Menaa, F., Abdelghani, A. & Menaa, B. Graphene nanomaterials as biocompatible and conductive scaffolds for stem cells: impression for tissue engineering and regenerative medication. J. Tissue Eng. Regen. Med. 9, 1321–1338 (2015).

10.

Wang, Z. & Dai, Z. Carbon nanomaterial-based electrochemical biosensors: an outline. Nanoscale 7, 6420–6431 (2015).

11.

Heerema, S. J. & Dekker, C. Graphene nanodevices for DNA sequencing. Nat. Nanotechnol. 11, 127–136 (2016).

12.

Yang, Ok., Feng, L. & Liu, Z. The advancing makes use of of nano-graphene in drug supply. Skilled Opin. Drug Deliv. 12, 601–612 (2015).

13.

Muthoosamy, Ok., Bai, R. & Manickam, S. Graphene and Graphene Oxide as a Docking Station for Fashionable Drug Supply System. Curr. Drug Deliv. 11, 701–718 (2014).

14.

Chatterjee, N. et al. A techniques toxicology strategy reveals the Wnt-MAPK crosstalk pathway mediated reproductive failure in Caenorhabditis elegans uncovered to graphene oxide (GO) however to not lowered graphene oxide (rGO). Nanotoxicology 11, 76–86 (2017).

15.

Nirmal, N. Ok., Awasthi, Ok. Ok. & John, P. J. Results of Nano-Graphene Oxide on Testis, Epididymis and Fertility of Wistar Rats. Primary Clin. Pharmacol. Toxicol. 121, 202–210 (2017).

16.

Souza, J. P., Venturini, F. P., Santos, F. & Zucolotto, V. Continual toxicity in Ceriodaphnia dubia induced by graphene oxide. Chemosphere 190, 218–224 (2018).

17.

Asghar, W. et al. Toxicology Examine of Single-walled Carbon Nanotubes and Lowered Graphene Oxide in Human Sperm. Sci. Rep. 6, 30270 (2016).

18.

Mesarič, T. et al. Sperm publicity to carbon-based nanomaterials causes abnormalities in early improvement of purple sea urchin (Paracentrotus lividus). Aquat. Toxicol. 163, 158–166 (2015).

19.

Liang, S., Xu, S., Zhang, D., He, J. & Chu, M. Reproductive toxicity of nanoscale graphene oxide in male mice. Nanotoxicology 9, 92–105 (2015).

20.

Bernabò, N. et al. Graphene oxide impacts in vitro fertilization end result by interacting with sperm membrane in an animal mannequin. Carbon N. Y. 129, 428–437 (2018).

21.

Yanagimachi, R. Fertility of mammalian spermatozoa: its improvement and relativity. Zygote 2, 371–372 (1994).

22.

Suarez, S. S. Regulation of sperm storage and motion within the mammalian oviduct. Int. J. Dev. Biol. 52, 455–462 (2008).

23.

Romarowski, A. et al. PKA-dependent phosphorylation of LIMK1 and Cofilin is important for mouse sperm acrosomal exocytosis. Dev. Biol. 405, 237–249 (2015).

24.

Barboni, B. et al. Sort-1 cannabinoid receptors scale back membrane fluidity of capacitated boar sperm by impairing their activation by bicarbonate. PLoS One 6, e23038 (2011).

25.

Boerke, A. et al. Involvement of bicarbonate-induced radical signaling in oxysterol formation and sterol depletion of capacitating mammalian sperm throughout in vitro fertilization. Biol. Reprod. 88, 21 (2013).

26.

Bernabò, N. et al. Endocannabinoid-binding CB1 and TRPV1 receptors as modulators of sperm capacitation. Commun. Integr. Biol. 5, 68–70 (2012).

27.

Gadella, B. M. & Harrison, R. A. P. Capacitation induces cyclic adenosine three′,5′-monophosphate-dependent, however apoptosis-unrelated, publicity of aminophospholipids on the apical head plasma membrane of boar sperm cells. Biol. Reprod. 67, 340–350 (2002).

28.

Gadella, B. M. & Luna, C. Cell biology and purposeful dynamics of the mammalian sperm floor. Theriogenology 81, 74–84 (2014).

29.

Bernabò, N. et al. The position of actin in capacitation-related signaling: an in silico and in vitro examine. BMC Syst. Biol. 5, 47 (2011).

30.

Daniel, L. et al. Regulation of the sperm EGF receptor by ouabain results in initiation of the acrosome response. Dev. Biol. 344, 650–657 (2010).

31.

Cohen, G., Rubinstein, S., Gur, Y. & Breitbart, H. Crosstalk between protein kinase A and C regulates phospholipase D and F-actin formation throughout sperm capacitation. Dev. Biol. 267, 230–241 (2004).

32.

Stival, C. et al. In Advances in anatomy, embryology, and cell biology 220, 93–106 (2016).

33.

Rajamanickam, G. D., Kastelic, J. P. & Thundathil, J. C. Na/Ok-ATPase regulates bovine sperm capacitation by raft- and non-raft-mediated signaling mechanisms. Mol. Reprod. Dev. 84, 1168–1182 (2017).

34.

Gadella, B. M. Sperm membrane physiology and relevance for fertilization. Anim. Reprod. Sci. 107, 229–236 (2008).

35.

Hossain, M. S., Afrose, S., Sawada, T., Hamano, Ok. & Tsujii, H. Metabolism of exogenous fatty acids, fatty acid-mediated ldl cholesterol efflux, PKA and PKC pathways in boar sperm acrosome response. Reprod. Med. Biol. 9, 23–31 (2010).

36.

Viviani Anselmi, C. et al. Fatty acid proportion in erythrocyte membranes of atrial flutter/fibrillation sufferers and controls. J. Interv. Card. Electrophysiol. 27, 95–99 (2010).

37.

Mendeluk, G. R., Cohen, M. I., Ferreri, C. & Chatgilialoglu, C. Vitamin and Reproductive Well being: Sperm versus Erythrocyte Lipidomic Profile and ω −three Consumption. J. Nutr. Metab. 2015, 1–eight (2015).

38.

Leahy, T. & Gadella, B. M. New insights into the regulation of ldl cholesterol efflux from the sperm membrane. Asian J. Androl. 17, 561–7 (2015).

39.

Li, S. & Winuthayanon, W. Oviduct: roles in fertilization and early embryo improvement. J. Endocrinol. 232, R1–R26 (2017).

40.

Avilés, M., Gutiérrez-Adán, A. & Coy, P. Oviductal secretions: will they be key elements for the long run ARTs? MHR Primary Sci. Reprod. Med. 16, 896–906 (2010).

41.

Oddi, S. et al. Useful characterization of putative ldl cholesterol binding sequence (CRAC) in human type-1 cannabinoid receptor. J. Neurochem. 116, 858–865 (2011).

42.

Sanchez, S. A., Gunther, G., Tricerri, M. A. & Gratton, E. Methyl-β-cyclodextrins preferentially take away ldl cholesterol from the liquid disordered section in large unilamellar vesicles. J. Membr. Biol. 241, 1–10 (2011).

43.

van Gestel, R. A., Helms, J. B., Brouwers, J. F. H. M. & Gadella, B. M. Results of methyl-β-cyclodextrin-mediated ldl cholesterol depletion in porcine sperm in comparison with somatic cells. Mol. Reprod. Dev. 72, 386–395 (2005).

44.

Botto, L., Bernabò, N., Palestini, P. & Barboni, B. Bicarbonate Induces Membrane Reorganization and CBR1 and TRPV1 Endocannabinoid Receptor Migration in Lipid Microdomains in Capacitating Boar Spermatozoa. J. Membr. Biol. 238, 33–41 (2010).

45.

Zhang, L., Xu, B. & Wang, X. Ldl cholesterol Extraction from Cell Membrane by Graphene Nanosheets: A Computational Examine. J. Phys. Chem. B 120, 957–964 (2016).

46.

Fabbro, A. et al. Graphene-Based mostly Interfaces Do Not Alter Goal Nerve Cells. ACS Nano 10, 615–623 (2016).

47.

Bach, D. & Wachtel, E. Phospholipid/ldl cholesterol mannequin membranes: formation of ldl cholesterol crystallites. Biochim. Biophys. Acta – Biomembr. 1610, 187–197 (2003).

48.

Benesch, M. G. Ok. & McElhaney, R. N. A comparative differential scanning calorimetry examine of the results of ldl cholesterol and numerous oxysterols on the thermotropic section conduct of dipalmitoylphosphatidylcholine bilayer membranes. Chem. Phys. Lipids 195, 21–33 (2016).

49.

Inoue, T., Yanagihara, S., Misono, Y. & Suzuki, M. Impact of fatty acids on section conduct of hydrated dipalmitoylphosphatidylcholine bilayer: saturated versus unsaturated fatty acids. Chem. Phys. Lipids 109, 117–133 (2001).

50.

Breitbart, H. & Naor, Z. In Male Sterility and Motility Problems 45–53, https://doi.org/10.1007/978-1-4612-1522-6_4 (Springer New York, 1999).

51.

Breitbart, H., Cohen, G. & Rubinstein, S. Position of actin cytoskeleton in mammalian sperm capacitation and the acrosome response. Replica 129, 263–268 (2005).

52.

Brener, E. et al. Reworking of the actin cytoskeleton throughout mammalian sperm capacitation and acrosome response. Biol. Reprod. 68, 837–45 (2003).

53.

Baldi, E., Luconi, M., Bonaccorsi, L., Krausz, C. & Forti, G. Human sperm activation throughout capacitation and acrosome response: position of calcium, protein phosphorylation and lipid remodelling pathways. Entrance. Biosci. 1, d189–205 (1996).

54.

Bejarano, I. et al. In Male Infertility, https://doi.org/10.5772/32617 (InTech, 2012).

55.

Hashemi, E. et al. Cyto and genotoxicities of graphene oxide and lowered graphene oxide sheets on spermatozoa. RSC Adv. four, 27213 (2014).

56.

Akhavan, O., Ghaderi, E. & Akhavan, A. Measurement-dependent genotoxicity of graphene nanoplatelets in human stem cells. Biomaterials 33, 8017–8025 (2012).

57.

Akhavan, O. & Ghaderi, E. Toxicity of Graphene and Graphene Oxide Nanowalls Towards Micro organism. ACS Nano four, 5731–5736 (2010).

58.

López-Úbeda, R., García-Vázquez, F., Gadea, J. & Matás, C. Oviductal epithelial cells chosen boar sperm based on their purposeful traits. Asian J. Androl. 19, 396 (2017).

59.

Yang, X. et al. Developmental neurotoxicity and immunotoxicity induced by graphene oxide in zebrafish embryos. Environ. Toxicol. tox.22695, https://doi.org/10.1002/tox.22695 (2018).

60.

Maccarrone, M. et al. Characterization of the endocannabinoid system in boar spermatozoa and implications for sperm capacitation and acrosome response. J. Cell Sci. 118, 4393–4404 (2005).

61.

Bernabò, N., Pistilli, M. G., Mattioli, M. & Barboni, B. Position of TRPV1 channels in boar spermatozoa acquisition of fertilizing potential. Mol. Cell. Endocrinol. 323, 224–231 (2010).

62.

Tettamanti, G., Bonali, F., Marchesini, S. & Zambotti, V. A brand new process for the extraction, purification and fractionation of mind gangliosides. Biochim. Biophys. Acta 296, 160–70 (1973).

63.

Klem, S., Klingler, M., Demmelmair, H. & Koletzko, B. Environment friendly and Particular Evaluation of Crimson Blood Cell Glycerophospholipid Fatty Acid Composition. PLoS One 7, e33874 (2012).

64.

Wolf, D. E., Maynard, V. M., McKinnon, C. A. & Melchior, D. L. Lipid domains within the ram sperm plasma membrane demonstrated by differential scanning calorimetry. Proc. Natl. Acad. Sci. USA 87, 6893–6 (1990).

65.

Blumenthal, D., Goldstien, L., Edidin, M. & Gheber, L. A. Common Strategy to FRAP Evaluation of Arbitrary Bleaching Patterns. Sci. Rep. 5, 11655 (2015).


Supply hyperlink
asubhan

wordpress autoblog

amazon autoblog

affiliate autoblog

wordpress web site

web site improvement

Show More

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Close