Implication of thermally conductive nanodiamond-interspersed graphite nanoplatelet hybrids in thermoset composites with superior thermal administration functionality


Shen, D. et al. Enhanced thermal conductivity of epoxy composites full of silicon carbide nanowires. Sci. Rep. 7, 1–11 (2017).


Tune, S. H. et al. Enhanced thermal conductivity of epoxy-graphene composites by utilizing non-oxidized graphene flakes with non-covalent functionalization. Adv. Mater. 25, 732–737 (2013).


Huang, X., Zhi, C., Jiang, P., Golberg, D. & Bando, Y. Polyhedral Oligosilsesquioxane-Modified Boron Nitride Nanotube Primarily based Epoxy Nanocomposites: An Ultimate Dielectric Materials with Excessive Thermal Conductivity. Adv. Funct. Mater. 23, 1824–1831 (2013).


Chen, B. et al. Friction and Put on Properties of Polyimide-Primarily based Composites with a Multiscale Carbon Fiber-Carbon Nanotube Hybrid. Tribol. Lett. 65 (2017).


Fan, Y. et al. Reinforcement of resolution styrene-butadiene rubber by incorporating hybrids of rice bran carbon and floor modified fumed silica. J. Vinyl Addit. Technol. 1–7, (2018).


Zhang, Y. et al. Current superior thermal interfacial supplies: A assessment of conducting mechanisms and parameters of carbon supplies. Carbon N. Y. 142, 445–460 (2019).


Zhang, Y., Choi, J. R. & Park, S.-J. Thermal conductivity and thermo-physical properties of nanodiamond-attached exfoliated hexagonal boron nitride/epoxy nanocomposites for microelectronics. Compos. Half A Appl. Sci. Manuf. 101, 227–236 (2017).


Bryning, M. B., Milkie, D. E., Islam, M. F., Kikkawa, J. M. & Yodh, A. G. Thermal conductivity and interfacial resistance in single-wall carbon nanotube epoxy composites. Appl. Phys. Lett. 87, 1–three (2005).


Kim, Ok. & Kim, J. Fabrication of thermally conductive composite with floor modified boron nitride by epoxy wetting methodology. Ceram. Int. 40, 5181–5189 (2014).


Choi, J. R., Rhee, Ok. Y. & Park, S. J. Affect of electrolessly silver-plated multi-walled carbon nanotubes on thermal conductivity of epoxy matrix nanocomposites. Compos. Half B Eng. 80, 379–384 (2015).


Zhang, Y., Choi, J. R. & Park, S.-J. Enhancing the warmth and cargo switch effectivity by optimizing the interface of hexagonal boron nitride/elastomer nanocomposites for thermal administration functions. Polymer (Guildf). 143, 1–9 (2018).


Ng, H. Y., Lu, X. & Lau, S. Ok. Thermal conductivity, electrical resistivity, mechanical, and rheological properties of thermoplastic composites full of boron nitride and carbon fiber. Polym. Compos. 26, 66–73 (2005).


Kuang, Z. et al. Fabrication of extremely oriented hexagonal boron nitride nanosheet/elastomer nanocomposites with excessive thermal conductivity. Small 11, 1655–1659 (2015).


Yuan, C. et al. Thermal Conductivity of Polymer-Primarily based Composites with Magnetic Aligned Hexagonal Boron Nitride Platelets. ACS Appl. Mater. Interfaces 7, 13000–13006 (2015).


Tian, X. et al. Shear-Assisted Manufacturing of Few-Layer Boron Nitride Nanosheets by Supercritical CO2 Exfoliation and Its Use for Thermally Conductive Epoxy Composites. Sci. Rep. 7, 1–9 (2017).


Dai, W. et al. Enhanced thermal conductivity for polyimide composites with a three-dimensional silicon carbide nanowire@graphene sheets filler. J. Mater. Chem. A three, 4884–4891 (2015).


Román-Manso, B., Chevillotte, Y., Osendi, M. I., Belmonte, M. & Miranzo, P. Thermal conductivity of silicon carbide composites with extremely oriented graphene nanoplatelets. J. Eur. Ceram. Soc. 36, 3987–3993 (2016).


Chen, J., Xiao, P. & Xiong, X. The mechanical properties and thermal conductivity of carbon/carbon composites with the fiber/matrix interface modified by silicon carbide nanofibers. Mater. Des. 84, 285–290 (2015).


Fang, L. et al. Nano–micro construction of functionalized boron nitride and aluminum oxide for epoxy composites with enhanced thermal conductivity and breakdown energy. RSC Adv. four, 21010–21017 (2014).


Hemmat Esfe, M. et al. Estimation of thermal conductivity of Al2O3/water (40%)-ethylene glycol (60%) by synthetic neural community and correlation utilizing experimental knowledge. Int. Commun. Warmth Mass Transf. 74, 125–128 (2016).


Zhang, Y., Rak Choi, J. & Park, S.-J. Interlayer polymerization in amine-terminated macromolecular chain-grafted expanded graphite for fabricating extremely thermal conductive and bodily sturdy thermoset composites for thermal administration functions. Compos. Half A Appl. Sci. Manuf, (2018).


Gulotty, R., Castellino, M., Jagdale, P., Tagliaferro, A. & Balandin, A. A. Results of functionalization on thermal properties of single-wall and multi-wall carbon nanotube-polymer nanocomposites. ACS Nano 7, 5114–5121 (2013).


Liu, F. et al. Investigation of thermal vitality transport interface of hybrid graphene-carbon nanotube/polyethylene nanocomposites. Sci. Rep. 7, 1–eight (2017).


Min, C., Yu, D., Cao, J., Wang, G. & Feng, L. A graphite nanoplatelet/epoxy composite with excessive dielectric fixed and excessive thermal conductivity. Carbon N. Y. 55, 116–125 (2013).


Kim, H. S. et al. Quantity management of expanded graphite based mostly on inductively coupled plasma and enhanced thermal conductivity of epoxy composite by formation of the filler community. Carbon N. Y. 119, 40–46 (2017).


Shen, X., Wang, Z., Wu, Y., Liu, X. & Kim, J. Ok. Impact of functionalization on thermal conductivities of graphene/epoxy composites. Carbon N. Y. 108, 412–422 (2016).


Wu, X., Liu, H., Tang, Z. & Guo, B. Scalable Fabrication of Thermally Conductive Elastomer/Boron Nitride Nanosheets Composites by Slurry Compounding. Compos. Sci. Technol. 78, 303–310 (2015).


Yu, S., Hing, P. & Hu, X. Thermal conductivity of polystyrene-aluminum nitride composite. Compos. – Half A Appl. Sci. Manuf. 33, 289–292 (2002).


Lian, G. et al. Vertically Aligned and Interconnected Graphene Networks for Excessive Thermal Conductivity of Epoxy Composites with Ultralow Loading. Chem. Mater. 28, 6096–6104 (2016).


Yu, A., Itkis, M. E., Bekyarova, E. & Haddon, R. C. Impact of single-walled carbon nanotube purity on the thermal conductivity of carbon nanotube-based composites. Appl. Phys. Lett. 89, 2004–2007 (2006).


Zhang, X., Meng, Q., Wang, X. & Bai, S. Poly(adipic acid-hexamethylene diamine)-functionalized multi-walled carbon nanotube nanocomposites. J. Mater. Sci. 46, 923–930 (2010).


Eksik, O. et al. A novel strategy to reinforce the thermal conductivity of epoxy nanocomposites utilizing graphene core-shell components. Carbon N. Y. 101, 239–244 (2016).


Mahanta, N. Ok., Loos, M. R., Manas Zlocozower, I. & Abramson, A. R. Graphite–graphene hybrid filler system for prime thermal conductivity of epoxy composites. J. Mater. Res. 30, 959–966 (2015).


Im, H. & Kim, J. The impact of Al2O3 doped multi-walled carbon nanotubes on the thermal conductivity of Al2O3/epoxy terminated poly(dimethylsiloxane) composites. Carbon N. Y. 49, 3503–3511 (2011).


Teng, C. C., Ma, C. C. M., Chiou, Ok. C., Lee, T. M. & Shih, Y. F. Synergetic impact of hybrid boron nitride and multi-walled carbon nanotubes on the thermal conductivity of epoxy composites. Mater. Chem. Phys. 126, 722–728 (2011).


Zhang, Y., Rhee, Ok. Y. & Park, S. J. Nanodiamond nanocluster-decorated graphene oxide/epoxy nanocomposites with enhanced mechanical habits and thermal stability. Compos. Half B Eng. 114, 111–120 (2017).


Sehaqui, H., Zhou, Q. & Berglund, L. A. Excessive-porosity aerogels of excessive particular floor space ready from nanofibrillated cellulose (NFC). Compos. Sci. Technol. 71, 1593–1599 (2011).


Zhang, Y., Rhee, Ok. Y., Hui, D. & Park, S. J. A crucial assessment of nanodiamond based mostly nanocomposites: Synthesis, properties and functions. Compos. Half B Eng. 143, 19–27 (2018).


Zhang, Y. & Park, S.-J. Enhanced interfacial interplay by grafting carboxylated-macromolecular chains on nanodiamond surfaces for epoxy-based thermosets. J. Polym. Sci. Half B Polym. Phys. 1–9, (2017).


Chen, J., Huang, X., Zhu, Y. & Jiang, P. Cellulose Nanofiber Supported 3D Interconnected BN Nanosheets for Epoxy Nanocomposites with Ultrahigh Thermal Administration Functionality. Adv. Funct. Mater. 27, 1–9 (2017).


Hong, J. P. et al. Excessive thermal conductivity epoxy composites with bimodal distribution of aluminum nitride and boron nitride fillers. Thermochim. Acta 537, 70–75 (2012).

Supply hyperlink

wordpress autoblog

amazon autoblog

affiliate autoblog

wordpress web site

web site growth

Show More

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *