Chemistry

Metabolite profiling characterises chemotypes of Musa diploids and triploids at juvenile and pre-flowering development phases


1.

Janssens, S. B. et al. Evolutionary dynamics and biogeography of Musaceae reveal a correlation between the diversification of the banana household and the geological and climatic historical past of Southeast Asia. The New Phytologist 210, 1453–1465 (2016).

2.

Perrier, X. et al. Multidisciplinary views on banana (Musa spp.) domestication. Proc Natl Acad Sci USA 108, 11311–11318 (2011).

three.

De Langhe, E., Vrydaghs, L., de Maret, P., Perrier, X. & Denham, T. Why Bananas Matter: An introduction to the historical past of banana domestication. Ethnobotany Analysis & Purposes 7, 13 (2009).

Four.

Ploetz, R., Kepler, A., Daniells, J. & Nelson, S. Banana and plantain – an summary with an emphasis on Pacific island cultivars [Musacea (banana family)]. Species Profiles for Pacific Island Agroforestry (Everlasting Agriculture Assets, Ho-lualoa, Hawaii) (2007).

5.

Simmonds, N. W. & Shepherd, Okay. The taxonomy and origins of the cultivated bananas. Journal of the Linnean Society of London, Botany 55, 302–312 (1955).

6.

Nations, F. A. O. o. t. U. In Banana info and figures. (FAO, Rome, 2014).

7.

Heslop-Harrison, J. S. & Schwarzacher, T. Domestication, Genomics and the Future for Banana. Annals of Botany 100, 1073–1084 (2007).

eight.

de Jesus, O. N. et al. Genetic variety and inhabitants construction of Musa accessions in ex situconservation. BMC Plant Biology 13, 41 (2013).

9.

Ortiz, R. & Swennen, R. From crossbreeding to biotechnology-facilitated enchancment of banana and plantain. Biotechnology Advances 32, 158–169 (2014).

10.

Padmesh, P. et al. Exploring wild genetic assets of Musa acuminata Colla distributed within the humid forests of southern Western Ghats of peninsular India utilizing ISSR markers. Plant cell experiences 31, 1591–1601 (2012).

11.

Ordonez, N. et al. Worse Involves Worst: Bananas and Panama Illness—When Plant and Pathogen Clones Meet. PLOS Pathogens 11, e1005197 (2015).

12.

Englberger, L. et al. Carotenoid content material and flesh coloration of chosen banana cultivars rising in Australia. Meals and diet bulletin 27, 281–291 (2006).

13.

Ruas, M. et al. In Database Vol. 2017 (2017).

14.

Carreel, F. et al. Ascertaining maternal and paternal lineage inside Musa by chloroplast and mitochondrial DNA RFLP analyses. Genome 45, 679–692 (2002).

15.

Youssef, M., James, A. C., Rivera-Madrid, R., Ortiz, R. & Escobedo-GraciaMedrano, R. M. Musa Genetic Range Revealed by SRAP and AFLP. Molecular Biotechnology 47, 189–199 (2011).

16.

Christelová, P. et al. A platform for environment friendly genotyping in Musa utilizing microsatellite markers. AoB PLANTS 2011 (2011).

17.

Čížková, J. et al. Molecular and Cytogenetic Characterization of Wild Musa Species. PLOS ONE 10, e0134096 (2015).

18.

Ude, G., Pillay, M., Nwakanma, D. & Tenkouano, A. Genetic Range in Musa acuminata Colla and Musa balbisiana Colla and a few of their pure hybrids utilizing AFLP Markers. Theoretical and Utilized Genetics 104, 1246–1252 (2002).

19.

Kumar, R., Bohra, A., Pandey, A. Okay., Pandey, M. Okay. & Kumar, A. Metabolomics for Plant Enchancment: Standing and Prospects. Frontiers in Plant Science eight (2017).

20.

Pandey, A. et al. Genome-wide Expression Evaluation and Metabolite Profiling Elucidate Transcriptional Regulation of Flavonoid Biosynthesis and Modulation underneath Abiotic Stresses in Banana. Scientific Reviews 6, 31361 (2016).

21.

Halket, J. M. et al. Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. J Exp Bot 56, 219–243 (2005).

22.

Li, L.-F. et al. Origins and Domestication of Cultivated Banana Inferred from Chloroplast and Nuclear Genes. PLOS ONE eight, e80502 (2013).

23.

Ude, G., Pillay, M., Nwakanma, D. & Tenkouano, A. Evaluation of genetic variety and sectional relationships in Musa utilizing AFLP markers. Theoretical and Utilized Genetics 104, 1239–1245 (2002).

24.

Muiruri, Okay. S. et al. Dominant Allele Phylogeny and Constitutive Subgenome Haplotype Inference in Bananas Utilizing Mitochondrial and Nuclear Markers. Genome Biology and Evolution 9, 2510–2521 (2017).

25.

Martin, G. et al. Evolution of the Banana Genome (Musa acuminata) Is Impacted by Giant Chromosomal Translocations. Molecular biology and evolution 34, 2140–2152 (2017).

26.

Perrier, X. Combining Organic Approaches to Shed Gentle on the Evolution of Edible Bananas. 2009 7, 18, (2009).

27.

De Langhe, E., Hřibová, E., Carpentier, S., Doležel, J. & Swennen, R. Did backcrossing contribute to the origin of hybrid edible bananas? Annals of Botany 106, 849–857 (2010).

28.

Boonruangrod, R., Fluch, S. & Burg, Okay. Elucidation of origin of the current day hybrid banana cultivars utilizing the 5′ETS rDNA sequence data. Molecular Breeding 24, 77–91 (2009).

29.

Ude, G., Pillay, M., Ogundiwin, E. & Tenkouano, A. Genetic variety in an African plantain core assortment utilizing AFLP and RAPD markers. Theoretical and Utilized Genetics 107, 248–255 (2003).

30.

Risterucci, A. M. et al. Growth and evaluation of Range Arrays Expertise for high-throughput DNA analyses in Musa. Theor Appl Genet 119, 1093–1103 (2009).

31.

De Langhe, E., Perrier, X., Donohue, M. & Denham, T. P. The Unique Banana Break up: Multi-disciplinary implications of the era of African and Pacific Plantains in Island Southeast Asia. Ethnobotany Analysis & Purposes 14, 14 (2015).

32.

Wang, X.-L., Chiang, T.-Y., Roux, N., Hao, G. & Ge, X.-J. Genetic variety of untamed banana (Musa balbisiana Colla) in China as revealed by AFLP markers. Genet Resour Crop Evol 54, 1125–1132 (2007).

33.

Ahmad, F., Megia, R. & Poerba, Y. S. Genetic Range of Musa balbisiana Colla in Indonesia Primarily based on AFLP Marker. HAYATI Journal of Biosciences 21, 39–47 (2014).

34.

Crouch, J. H. et al. Comparability of PCR-based molecular marker analyses of Musa breeding populations. Molecular Breeding 5, 233–244 (1999).

35.

Nayar, N. M. In Horticultural Evaluations. 117–164 (John Wiley & Sons, Inc., 2010).

36.

Kundapura Venkataramana, R., Hastantram Sampangi-Ramaiah, M., Ajitha, R. N., Khadke, G. & Chellam, V. Insights into Musa balbisiana and Musa acuminata species divergence and improvement of genic microsatellites by transcriptomics method. Plant. Gene Four, 78–82 (2015).

37.

Carpentier, S. C. et al. Using 2D-electrophoresis and de novo sequencing to characterize inter- and intra-cultivar protein polymorphisms in an allopolyploid crop. Phytochemistry 72, 1243–1250 (2011).

38.

Berry, J. O., Yerramsetty, P., Zielinski, A. M. & Mure, C. M. Photosynthetic gene expression in larger vegetation. Photosynthesis Analysis 117, 91–120 (2013).

39.

Sugiura, M. The chloroplast genome. Essays in biochemistry 30, 49–57 (1995).

40.

Dutta, S., Mohanty, S. & Tripathy, B. C. Function of Temperature Stress on Chloroplast Biogenesis and Protein Import in Pea. Plant Physiology 150, 1050–1061 (2009).

41.

Peel, M. C., Finlayson, B. L. & McMahon, T. A. Up to date world map of the Köppen-Geiger local weather classification. Hydrol. Earth Syst. Sci. 11, 1633–1644 (2007).

42.

Li, L.-F., Häkkinen, M., Yuan, Y.-M., Hao, G. & Ge, X.-J. Molecular phylogeny and systematics of the banana household (Musaceae) inferred from a number of nuclear and chloroplast DNA fragments, with a particular reference to the genus Musa. Molecular Phylogenetics and Evolution 57, 1–10 (2010).

43.

Nwakanma, D. C., Pillay, M., Okoli, B. E. & Tenkouano, A. Sectional relationships within the genus Musa L. inferred from the PCR-RFLP of organelle DNA sequences. Theoretical and Utilized Genetics 107, 850–856 (2003).

44.

Ewané, C. A., Lepoivre, P., de Lapeyre de Bellaire, L. & Lassois, L. Involvement of phenolic compounds within the susceptibility of bananas to crown rot. A evaluation. BASE [En ligne] 16, 393–404 (2012).

45.

Gall, H. L. et al. Cell Wall Metabolism in Response to Abiotic Stress. Crops Four, 112–166 (2015).

46.

Guidotti, B. B., Gomes, B. R., Siqueira-Soares, R. D. C., Soares, A. R. & Ferrarese-Filho, O. The consequences of dopamine on root development and enzyme exercise in soybean seedlings. Plant Signaling & Habits eight, e25477 (2013).

47.

Sanchez Timm, E. et al. Identification of Differentially-Expressed Genes in Response to Mycosphaerella fijiensis within the Resistant Musa Accession ‘Calcutta-Four’ Utilizing Suppression Subtractive Hybridization. PLoS One 11, e0160083 (2016).

48.

Miller, R. N. G. et al. Evaluation of non-TIR NBS-LRR resistance gene analogs in Musa acuminata Colla: Isolation, RFLP marker improvement, and bodily mapping. BMC Plant Biology eight, 15–15 (2008).

49.

Teo, C. H. et al. Genome structure and classification utilizing retrotransposon-based markers within the orphan crop banana. Journal of Plant Biology 48, 96–105 (2005).

50.

Gawel, N. & Jarret, R. L. Cytoplasmic genetic variety in bananas and plantains. Euphytica 52, 19–23 (1991).

51.

Jeridi, M. et al. Homoeologous chromosome pairing between the A and B genomes of Musa spp. revealed by genomic in situ hybridization. Ann Bot 108, 975–981 (2011).

52.

Daniells, J., Jenny, C., Karamura, D. & Tomekpe, Okay. Musalogue: a listing of Musa germplasm. Range within the genus Musa. (Worldwide Community for the Enchancment of Banana and Plantain, 2001).

53.

Valmayor, R. V. et al. Banana cultivar names and synonyms in Southeast Asia. (INIBAP Regional Workplace for Asia and the Pacific, 2000).

54.

City, L., Lu, P. & Thibaud, R. Inhibitory impact of flowering and early fruit development on leaf photosynthesis in mango. Tree Physiol 24, 387–399 (2004).

55.

Grainger, J. METABOLISM AND FLOWERING. Annals of Utilized Biology 27, 311–322 (1940).

56.

Value, E. J., Bhattacharjee, R., Lopez-Montes, A. & Fraser, P. D. Metabolite profiling of yam (Dioscorea spp.) accessions to be used in crop enchancment programmes. Metabolomics 13, 144 (2017).

57.

Drapal, M. et al. Identification of metabolites related to water stress responses in Solanum tuberosum L. clones. Phytochemistry 135, 24–33 (2017).

58.

Nayar, N. The Bananas: Botany, Origin, Dispersal.In Horticultural Evaluations (ed. Janick, J.) Ch. 2, 117-164 (John Wiley & Sons, Inc., 2010).

59.

Gutierrez, E. et al. Transcriptomics, Focused Metabolomics and Gene Expression of Blackberry Leaves and Fruits Point out Flavonoid Metabolic Flux from Leaf to Pink Fruit. Frontiers in Plant Science eight, 472 (2017).

60.

Shahat, A. A. & Marzouk, M. S. In Medicinal Plant Analysis in Africa (ed. Kuete, V.) Ch. 13, 479–555 (Elsevier, 2013).

61.

Hu, W. et al. Comparative physiological and transcriptomic analyses present built-in perception into osmotic, chilly, and salt stress tolerance mechanisms in banana. Scientific Reviews 7, 43007 (2017).

62.

Li, C.-Y. et al. Transcriptome profiling of resistant and inclined Cavendish banana roots following inoculation with Fusarium oxysporum f. sp. cubense tropical race Four. BMC Genomics 13, 374 (2012).

63.

Singh, P. et al. Spatial transcriptome evaluation offers insights of key gene(s) concerned in steroidal saponin biosynthesis in medicinally vital herb Trillium govanianum. Scientific Reviews 7, 45295 (2017).

64.

Sandoval, J., Muller, L. & Weberling, F. Foliar morphology and anatomy of Musa cv. Grande Naine (AAA) vegetation grown in vitro and through hardening as in comparison with field-grown vegetation. Fruits 49, 37–46 (1994).

65.

Us-Camas, R., Rivera-Solís, G., Duarte-Aké, F. & De-la-Peña, C. In vitro tradition: an epigenetic problem for vegetation. Plant Cell, Tissue and Organ Tradition (PCTOC) 118, 187–201 (2014).

66.

Value, E. J., Wilkin, P., Sarasan, V. & Fraser, P. D. Metabolite profiling of Dioscorea (yam) species reveals underutilised biodiversity and renewable sources for high-value compounds. Scientific Reviews 6, 29136 (2016).

67.

Nogueira, M., Mora, L., Enfissi, E. M., Bramley, P. M. & Fraser, P. D. Subchromoplast sequestration of carotenoids impacts regulatory mechanisms in tomato traces expressing totally different carotenoid gene mixtures. Plant Cell 25, 4560–4579 (2013).

68.

Fernie, A. R. et al. Suggestions for reporting metabolite information. Plant Cell 23, 2477–2482 (2011).

69.

Sumner, L. W. et al. Proposed minimal reporting requirements for chemical evaluation. Metabolomics three, 211–221 (2007).

70.

Shahaf, N. et al. Establishing a mass measurement error floor to enhance automated annotations in liquid chromatography/mass spectrometry primarily based metabolomics. Fast Commun Mass Spectrom 27, 2425–2431 (2013).

71.

Wehrens, R., Bloemberg, T. G. & Eilers, P. H. Quick parametric time warping of peak lists. Bioinformatics 31, 3063–3065 (2015).

72.

Fraser, P. D., Pinto, M. E. S., Holloway, D. E. & Bramley, P. M. Software of high-performance liquid chromatography with photodiode array detection to the metabolic profiling of plant isoprenoids. The Plant Journal 24, 551–558 (2000).

73.

Addinsoft. XLSTAT statistical and information evaluation answer (2019).


Supply hyperlink
asubhan

wordpress autoblog

amazon autoblog

affiliate autoblog

wordpress web site

web site improvement

Show More

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Close