Nitrogen-fixing timber may exacerbate local weather change below elevated nitrogen deposition


Pan, Y. et al. A big and chronic carbon sink on the planet’s forests. Science 333, 988–993 (2011).


Ciais, P. et al. in Local weather Change 2013: The Bodily Science Foundation (eds Stocker, T. et al.) 465–570 (IPCC, Cambridge Univ. Press, Cambridge, United Kingdom and New York, NY, USA. 2013).


Batterman, S. A. et al. Key function of symbiotic dinitrogen fixation in tropical forest secondary succession. Nature 502, 224–227 (2013).


Gehring, C., Vlek, P. L. G., De Souza, L. A. G. & Denich, M. Organic nitrogen fixation in secondary regrowth and mature rainforest of central Amazonia. Agric. Ecosyst. Environ. 111, 237–252 (2005).


Bühlmann, T., Caprez, R., Hiltbrunner, E., Körner, C. & Niklaus, P. A. Nitrogen fixation by Alnus species boosts soil nitrous oxide emissions. Eur. J. Soil Sci. 68, 740–748 (2017).


Erickson, H., Keller, M. & Davidson, E. A. Nitrogen oxide fluxes and nitrogen biking throughout postagricultural succession and forest fertilization within the humid tropics. Ecosystems four, 67–84 (2001).


Erickson, H., Davidson, E. A. & Keller, M. Former land-use and tree species have an effect on nitrogen oxide emissions from a tropical dry forest. Oecologia 130, 297–308 (2002).


Erickson, H. E. & Perakis, S. S. Soil fluxes of methane, nitrous oxide, and nitric oxide from aggrading forests in coastal Oregon. Soil Biol. Biochem. 76, 268–277 (2014).


Corridor, S. J. & Asner, G. P. Organic invasion alters regional nitrogen-oxide emissions from tropical rainforests. Glob. Chang. Biol. 13, 2143–2160 (2007).


Soper, F. M. et al. Remotely sensed cover nitrogen correlates with nitrous oxide emissions in a lowland tropical rainforest. Ecology 99, 2080–2089 (2018).


Myhre, G. et al. in Local weather Change 2013: The Bodily Science Foundation (eds Stocker, T. et al.) 659–740 (IPCC, Cambridge Univ. Press, Cambridge, United Kingdom and New York, NY, USA 2013).


Dentener, F. et al. Nitrogen and sulfur deposition on regional and international scales: a multimodel analysis. Glob. Biogeochem. Cycles 20, 1–21 (2006).


Magnani, F. et al. The human footprint within the carbon cycle of temperate and boreal forests. Nature 447, 849–851 (2007).


Zaehle, S., Ciais, P., Pal, A. D. & Prieur, V. Carbon advantages of anthropogenic reactive nitrogen offset by nitrous oxide emissions. Nat. Geosci. four, 601–605 (2011).


Reay, D. S., Dentener, F. J., Smith, P., Grace, J. & Feely, R. A. International nitrogen deposition and carbon sinks. Nat. Geosci. 1, 430–437 (2008).


Tian, H. et al. North American terrestrial CO2 uptake largely offset by CH4 and N2O emissions: towards a full accounting of the greenhouse gasoline funds. Clim. Change 129, 413–426 (2015).


Liu, L. & Greaver, T. L. A overview of nitrogen enrichment results on three biogenic GHGs: The CO2 sink could also be largely offset by stimulated N2O and CH4 emission. Ecol. Lett. 12, 1103–1117 (2009).


Menge, D. N. L., Wolf, A. A. & Funk, J. L. Range of nitrogen fixation methods in Mediterranean legumes. Nat. Vegetation 
1,15064 (2015).


Barron, A. R., Purves, D. W. & Hedin, L. O. Facultative nitrogen fixation by cover legumes in a lowland tropical forest. Oecologia 165, 511–520 (2011).


Sullivan, B. W. et al. Spatially strong estimates of organic nitrogen (N) fixation indicate substantial human alteration of the tropical N cycle. Proc. Natl Acad. Sci. USA 111, 8101–8106 (2014).


Binkley, D., Cromack Jr., Okay. & Baker, D. D. in The Biology and Administration of Pink Alder (eds Hibbs, D. E. et al.) 57–72 (Oregon State Univ. Press, Corvallis, 1994).


Menge, D. N. L. & Hedin, L. O. Nitrogen fixation in several biogeochemical niches alongside a 120 000-year chronosequence in New Zealand. Ecology 90, 2190–2201 (2009).


Galloway, J. N. et al. Transformation of the nitrogen cycle: latest tendencies, questions, and potential options. Science 320, 889–892 (2008).


Vet, R. et al. A world evaluation of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, natural acids, acidity and pH, and phosphorus. Atmos. Environ. 93, three–100 (2014).


Nakicenovic, N. and Swart, R. (eds) Emissions Situations (IPCC, Cambridge Univ. Press, Cambridge, 2000).


Vitousek, P. M., Menge, D. N., Reed, S. C. & Cleveland, C. C. Organic nitrogen fixation: charges, patterns and ecological controls in terrestrial ecosystems. Phil. Trans. R. Soc. B. 368, 20130119 (2013).


Menge, D. N. L., Lichstein, J. W. & Ángeles-Pérez, G. Nitrogen fixation methods can clarify the latitudinal shift in nitrogen-fixing tree abundance. Ecology 95, 2236–2245 (2014).


Gei, M. et al. Legume abundance alongside successional and rainfall gradients in Neotropical forests. Nat. Ecol. Evol. 2, 1104–1111 (2018).


Menge, D. N. L., Denoyer, J. L. & Lichstein, J. W. Phylogenetic constraints don’t clarify the rarity of nitrogen-fixing timber in late-successional temperate forests. PLoS ONE 5, e12056 (2010).


Sheffer, E., Batterman, S. A., Levin, S. A. & Hedin, L. O. Biome-scale nitrogen fixation methods chosen by climatic constraints on nitrogen cycle. Nat. Vegetation 1, 15182 (2015).


Chapin, F. S. III, Conway, A. J., Johnstone, J. F., Hollingsworth, T. N. & Hollingsworth, J. Absence of internet long-term successional facilitation by alder in a boreal Alaska floodplain. Ecology 97, 2986–2997 (2016).


Lai, H. R., Corridor, J. S., Batterman, S. A., Turner, B. L. & van Breugel, M. Nitrogen fixer abundance has no impact on biomass restoration throughout tropical secondary forest succession. J. Ecol. 106, 1415–1427 (2018).


Taylor, B. N., Chazdon, R. L., Bachelot, B. & Menge, D. N. L. Nitrogen-fixing timber inhibit progress of regenerating Costa Rican rainforests. Proc. Natl Acad. Sci. USA 114, 8817–8822 (2017).


Aronson, E. L. & Allison, S. D. Meta-analysis of environmental impacts on nitrous oxide launch in response to N modification. Entrance. Microbiol. three, 1–6 (2012).


Corridor, S. J. & Matson, P. A. Nitrogen oxide emissions after nitrogen additions in tropical forests. Nature 400, 152–155 (1999).


Liao, W., Menge, D. N. L., Lichstein, J. W. & Ángeles-Pérez, G. International local weather change will enhance the abundance of symbiotic nitrogen-fixing timber in a lot of North America. Glob. Chang. Biol. 23, 4777–4787 (2017).


Griffis, T. J. et al. Nitrous oxide emissions are enhanced in a hotter and wetter world. Proc. Natl Acad. Sci. USA 114, 12081–12085 (2017).


Smith, Okay. A. et al. Trade of greenhouse gases between soil and ambiance: interactions of soil bodily elements and organic processes. Eur. J. Soil Sci. 54, 779–791 (2003).


Adams, M. A., Turnbull, T. L., Sprent, J. I. & Buchmann, N. Legumes are completely different: leaf nitrogen, photosynthesis, and water use effectivity. Proc. Natl Acad. Sci. USA 113, 4098–4103 (2016).


Pellegrini, A. F. A., Staver, A. C., Hedin, L. O., Charles-Dominique, T. & Tourgee, A. Aridity, not hearth, favors nitrogen-fixing crops throughout tropical savanna and forest biomes. Ecology 97, 2177–2183 (2016).


Wieder, W. R., Cleveland, C. C., Smith, W. Okay. & Todd-Brown, Okay. Future productiveness and carbon storage restricted by terrestrial nutrient availability. Nat. Geosci. eight, 441–444 (2015).


Norby, R. J., Warren, J. M., Iversen, C. M., Medlyn, B. E. & McMurtrie, R. E. CO2 enhancement of forest productiveness constrained by restricted nitrogen availability. Proc. Natl Acad. Sci. USA 107, 19368–19373 (2010).


McCarthy, H. R. et al. Re-assessment of plant carbon dynamics on the Duke free-air CO2 enrichment web site: interactions of atmospheric [CO2] with nitrogen and water availability over stand growth. New Phytol. 185, 514–528 (2010).


Hungate, B. A. CO2 elicits long-term decline in nitrogen fixation. Science 304, 1291 (2004).


van Groenigen, Okay.-J. et al. Component interactions restrict soil carbon storage. Proc. Natl Acad. Sci. USA 103, 6571–6574 (2006).


Cunningham, S. C. et al. Balancing the environmental advantages of reforestation in agricultural areas. Perspect. Plant Ecol. Evol. Syst. 17, 301–317 (2015).


Macedo, M. O. et al. Modifications in soil C and N shares and nutrient dynamics 13 years after restoration of degraded land utilizing leguminous nitrogen-fixing timber. For. Ecol. Manag. 255, 1516–1524 (2008).


Stocker, B. D. et al. Terrestrial nitrogen biking in Earth system fashions revisited. New Phytol. 210, 1165–1168 (2016).


Wieder, W. R., Cleveland, C. C., Lawrence, D. M. & Bonan, G. B. Results of mannequin structural uncertainty on carbon cycle projections: organic nitrogen fixation as a case examine. Environ. Res. Lett. 10, 044016 (2015).


Vitousek, P. M., Hedin, L. O., Matson, P. A., Fownes, J. H. & Neff, J. in Successes, Limitations and Frontiers in Ecosystem Science (eds Tempo, M. L. & Groffman, P. M.) 432–451 (Springer, New York, 1998).


Liebig, J. Natural Chemistry in its Software to Agriculture and Physiology (Taylor and Walton, London, 1840).


De Klein, C. et al. in IPCC Pointers for Nationwide Greenhouse Gasoline Inventories Vol. four (eds Eggleston, H. S. et al.) 11.1–11.54 (IPCC, IGES, Hayama, Japan 2006).


MacDicken, Okay. International Forest Assets Evaluation 2015: what, why and the way? For. Ecol. Manag. 325, three–eight (2015).


Alvarez, R. A., Pacala, S. W., Winebrake, J. J., Chameides, W. L. & Hamburg, S. P. Larger focus wanted on methane leakage from pure gasoline infrastructure. Proc. Natl Acad. Sci. USA 109, 6435–6440 (2012).


Joos, F. et al. Carbon dioxide and local weather impulse response capabilities for the computation of greenhouse gasoline metrics: a multi-model evaluation. Atmos. Chem. Phys. 13, 2793–2825 (2013).


Pregitzer, Okay. S. & Euskirchen, E. S. Carbon biking and storage in world forests: Biome patterns associated to forest age. Glob. Chang. Biol. 10, 2052–2077 (2004).


Stehfest, E. & Bouwman, L. N2O and NO emission from agricultural fields and soils below pure vegetation: summarizing accessible measurement information and modeling of worldwide annual emissions. Nutr. Cycl. Agroecosystems 74, 207–228 (2006).


Pihlatie, M. et al. Gasoline focus pushed fluxes of nitrous oxide and carbon dioxide in boreal forest soils. Tellus B: Chem. Phys. Meteorol. 59, 458–469 (2007).


Winbourne, J. B. et al. Nitrogen biking throughout secondary succession in Atlantic Forest of Bahia, Brazil. Sci. Rep. eight, 1377 (2018).


Blundon, D. J. & Dale, M. R. T. Dinitrogen fixation (acetylene discount) in major succession close to Mount Robson, British Columbia, Canada. Arct. Alp. Res. 22, 255–263 (1990).


Boring, L. R. & Swank, W. T. The function of black locust (Robinia pseudoacacia) in forest succession. J. Ecol. 72, 749–766 (1984).


Ruess, R. W., McFarland, J. M., Trummer, L. M. & Rohrs-Richey, J. Okay. Illness-mediated declines in N-fixation inputs by Alnus tenuifolia to early-successional floodplains in inside and south-central Alaska. Ecosystems 12, 489–502 (2009).


Uliassi, D. D. & Ruess, R. W. Limitations to symbiotic nitrogen fixation in major succession on the Tanana River floodplain. Ecology 83, 88–103 (2002).


Pan, Y. et al. Age construction and disturbance legacy of North American forests. Biogeosciences eight, 715–732 (2011).

Supply hyperlink

wordpress autoblog

amazon autoblog

affiliate autoblog

wordpress web site

web site growth

Show More

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *