Chemistry

Plane measurement marketing campaign on summer time cloud microphysical properties over the Tibetan Plateau


1.

Xu, X., Lu, C., Shi, X. & Gao, S. World water tower: An atmospheric perspective. Geophys.res.lett 35, 525–530 (2008).

2.

Flohn, H. Contributions to a meteorology of the Tibetan highlands. Vol. no. 130 (Dept. of Atmospheric Science, Colorado State College, 1968).

three.

Zhao, Y., Xu, X., Ruan, Z., Chen, B. & Wang, F. Precursory strong-signal traits of the convective clouds of the Central Tibetan Plateau detected by radar echoes with respect to the evolutionary processes of an eastward-moving heavy rainstorm belt within the Yangtze River Basin. Meteorology and Atmospheric Physics, https://doi.org/10.1007/s00703-018-0597-2 (2018).

four.

Zhao, Y. et al. Results of convection over the Tibetan Plateau on rainstorms downstream of the Yangtze River Basin. Atmospheric Analysis 219, 24–35, https://doi.org/10.1016/j.atmosres.2018.12.Zero19 (2019).

5.

Yasunari, T. & Miwa, T. Convective Cloud Methods over the Tibetan Plateau and Their Influence on Meso-Scale Disturbances within the Meiyu/Baiu Frontal Zone -A Case Research in 1998-:—A Case Research in 1998—. Journal of the Meteorological Society of Japan 84, 783–803 (2006).

6.

Tao, S. Y. & Ding, Y. H. Observational Proof of the Affect of the Qinghai-Xizang (Tibet) Plateau on the Incidence of Heavy Rain and Extreme Convective Storms in China. Bulletin of the American Meteorological Society 62, 23–30 (1981).

7.

Zhao, Y. et al. The severity of drought and precipitation prediction within the jap fringe of the Tibetan Plateau. Theoretical and Utilized Climatology, https://doi.org/10.1007/s00704-018-2564-Eight (2018).

Eight.

Ye, D. Tibetan Plateau Meteorology. (Science Press, 1979).

9.

Wu, G. & Zhang, Y. Tibetan Plateau Forcing and the Timing of the Monsoon Onset over South Asia and the South China Sea. Month-to-month Climate Evaluate 126, 913–927, doi:10.1175/1520-0493(1998)126<0913:TPFATT>2.Zero.CO;2 (1998).

10.

Zhao, P. & Chen, L. Climatic options of atmospheric warmth supply/sink over the Qinghai-Xizang Plateau in 35 years and its relation to rainfall in China. Science in China Sequence D: Earth Sciences 44, 858–864, https://doi.org/10.1007/BF02907098 (2001).

11.

Zhou, X., Zhao, P., Chen, J., Chen, L. & Li, W. Impacts of thermodynamic processes over the Tibetan Plateau on the Northern Hemispheric local weather. Science in China Sequence D: Earth Sciences 52, 1679–1693, https://doi.org/10.1007/s11430-009-0194-9 (2009).

12.

Liu, G., Zhao, P. & Chen, J. Doable Impact of the Thermal Situation of the Tibetan Plateau on the Interannual Variability of the Summer time Asian–Pacific Oscillation. Journal of Local weather 30, 9965–9977, https://doi.org/10.1175/JCLI-D-17-0079.1 (2017).

13.

Nan, S., Zhao, P. & Chen, J. Variability of summertime Tibetan tropospheric temperature and related precipitation anomalies over the central-eastern Sahel. Local weather Dynamics. https://doi.org/10.1007/s00382-018-4246-Eight (2018).

14.

Xu, X. et al. A complete bodily sample of land-air dynamic and thermal construction on the Qinghai-Xizang Plateau. Science China Earth Sciences 45, 577–594 (2002).

15.

Fu, Y. et al. Tower mast of precipitation over the central Tibetan Plateau summer time. Geophysical Analysis Letters 33, 157–158 (2006).

16.

Kurosaki, Y. & Kimura, F. Relationship between Topography and Daytime Cloud Exercise round Tibetan Plateau. Journal of the Meteorological Society of Japan 80, 1339–1355 (2003).

17.

Fu, Y. & Liu, G. Doable Misidentification of Rain Kind by TRMM PR over Tibetan Plateau. Journal of Utilized Meteorology and Climatology 46, 667–672, https://doi.org/10.1175/jam2484.1 (2007).

18.

Liu, L., Feng, J., Chu, R., Zhou, Y. & Ueno, Ok. The diurnal variation of precipitation in monsoon season within the Tibetan Plateau. Advances in Atmospheric Sciences 19, 365–378 (2002).

19.

Uyeda, H. et al. Traits of Convective Clouds Noticed by a Doppler Radar at Naqu on Tibetan Plateau in the course of the GAME-Tibet IOP. Journal of the Meteorological Society of Japan 79, 463–474 (2001).

20.

Chang, Y. & Guo, X. L. Traits of convective cloud and precipitation throughout summer season at Naqu over Tibetan Plateau. Chinese language Science Bulletin 15, 1706–1471 (2016).

21.

Porcù, F., D’Adderio, L. P., Prodi, F. & Caracciolo, C. Rain drop measurement distribution over the Tibetan Plateau. Atmospheric Analysis 150, 21–30 (2014).

22.

Porcù, F., D’Adderio, L. P., Prodi, F. & Caracciolo, C. Results of Altitude on Most Raindrop Dimension and Fall Velocity as Restricted by Collisional Breakup. Journals of the Atmospheric Sciences 70, 1129–1134 (2013).

23.

Chen, B., Hu, Z., Liu, L. & Zhang, G. Raindrop Dimension Distribution Measurements at four,500 m on the Tibetan Plateau Throughout TIPEX-III. Journal of Geophysical Analysis: Atmospheres 122, 11,092–Zero11,106, https://doi.org/10.1002/2017JD027233 (2017).

24.

Gao, W., Liu, L., Li, J. & Lu, C. The Microphysical Properties of Convective Precipitation Over the Tibetan Plateau by a Subkilometer Decision Cloud-Resolving Simulation. Journal of Geophysical Analysis: Atmospheres 123, 3212–3227, https://doi.org/10.1002/2017jd027812 (2018).

25.

Gao, W., Sui, C. H., Fan, J., Hu, Z. & Zhong, L. A examine of cloud microphysics and precipitation over the Tibetan Plateau by radar observations and cloud‐resolving mannequin simulations. Journal of Geophysical Analysis Atmospheres 121 (2016).

26.

Guofu, Z. & Shoujun, C. Evaluation and comparability of mesoscale convective methods over the Qinghai-Xizang (Tibetan) Plateau. Advances in Atmospheric Sciences 20, 311–322, https://doi.org/10.1007/BF02690789 (2003).

27.

Zhang, X., Yao, X., Ma, J. & Mima, Z. Climatology of transverse shear strains associated to heavy rainfall over the Tibetan Plateau throughout boreal summer time. Journal of Meteorological Analysis 30, 915–926, https://doi.org/10.1007/s13351-Zero16-6952-7 (2016).

28.

Zhang, D., Guo, X., Gong, D. & Yao, Z. The observational outcomes of the clouds microphysical construction based mostly on the info obtained by 23 sorties between 1989 and 2008 in Shandong Province. Acta Meteorologica Sinica 69, 195–207 (2011).

29.

Zhang, D. G., Guo, X. L. & Dan-Hong, F. U. Plane Remark on Cloud Microphysics in Beijing and Its Surrounding Areas throughout August-September 2003. Chinese language Journal of Atmospheric Sciences 31, 596–610 (2007).

30.

Qi, Y. & Guo, X. An Observational Research of Macro/Microphysical Constructions of Convective Rainbands of a Chilly Vortex over Northeast China. Chinese language Journal of Atmospheric Sciences 31, 621–634 (2007).

31.

Fan, Y., Guo, X., Zhang, D., Danhong, F. U. & Chen, J. Airborne Particle Measuring System Measurement on Construction and Dimension Distribution of Stratocumulus throughout August to September in 2004 over Beijing and Its Surrounding Areas. Chinese language Journal of Atmospheric Sciences 34, 1187–1200 (2010).

32.

Hu, Z., Lei, H., Guo, X., Jin, D. & Qi, Y. Research of the Construction of a Stratiform Cloud and the Bodily Processes of Precipitation Formation. Chinese language Journal of Atmospheric Sciences 129, 305–312 (2007).

33.

Wang, L., Yin, Y., Lunge, L. I., Wang, X. & Fugang, L. I. Analyses on Typical Autumn Multi-Layer Stratiform Clouds over the Sanjiangyuan Nationwide Nature Reserve with Airborne Observations. Chinese language Journal of Atmospheric Sciences 37, 1038–1058 (2013).

34.

Zhu, S., Guo, X., Lu, G. & Guo, L. Ice Crystal Habits and Development Processes in Stratiform Clouds with Embedded Convection Examined via Plane Remark in Northern China. Journal of the Atmospheric Sciences 72, 2011–2032, https://doi.org/10.1175/JAS-D-14-0194.1 (2015).

35.

Knight, C. A. & Miller, L. J. Early Radar Echoes from Small, Heat Cumulus: Bragg and Hydrometeor Scattering. Journal of the Atmospheric Sciences 55, 2974–2992, doi:10.1175/1520-0469(1998)055<2974:EREFSW>2.Zero.CO;2 (1998).

36.

Boers, R., Jensen, J. B. & Krummel, P. B. Microphysical and short-wave radiative construction of stratocumulus clouds over the Southern Ocean: Summer time outcomes and seasonal variations. Quarterly Journal of the Royal Meteorological Society 124, 151–168, https://doi.org/10.1002/qj.49712454507 (1998).

37.

Albrecht, B. A., Randall, D. A. & Nicholls, S. Observations of Marine Stratocumulus Clouds Throughout FIRE. Bulletin of the American Meteorological Society 69, 618–626, doi:10.1175/1520-0477(1988)Zero69<0618:oomscd>2.Zero.co;2 (1988).

38.

Yum, S. S. & Hudson, J. G. Microphysical relationships in heat clouds. Atmospheric Analysis 57, 81–104 (2001).

39.

Albrecht, B. A., Bretherton, C. S., Johnson, D., Scubert, W. H. & Frisch, A. S. The Atlantic Stratocumulus Transition Experiment—ASTEX. Bulletin of the American Meteorological Society 76, 889–904, doi:10.1175/1520-0477(1995)076<0889:TASTE>2.Zero.CO;2 (1995).

40.

Bates, T. S., Huebert, B. J., Gras, J. L., Griffiths, F. B. & Durkee, P. A. Worldwide World Atmospheric Chemistry (IGAC) Challenge’s First Aerosol Characterization Experiment (ACE 1): Overview. Journal of Geophysical Analysis: Atmospheres 103, 16297–16318, https://doi.org/10.1029/97JD03741 (1998).

41.

Rangno, A. L. & Hobbs, P. V. Microstructures and precipitation improvement in cumulus and small cumulonimbus clouds over the nice and cozy pool of the tropical Pacific Ocean. Quarterly Journal of the Royal Meteorological Society 131, 639–673, https://doi.org/10.1256/qj.04.13 (2005).

42.

Hobbs, P. V. & Rangno, A. L. Ice Particle Concentrations in Clouds. J.atmos.sci 42, 2523–2549 (1985).

43.

Heymsfield, A. J. & McFarquhar, G. M. Microphysics of INDOEX clear and polluted commerce cumulus clouds. Journal of Geophysical Analysis: Atmospheres 106, 28653–28673, https://doi.org/10.1029/2000jd900776 (2001).

44.

Bailey, M. P. & Hallett, J. A Complete Behavior Diagram for Atmospheric Ice Crystals: Affirmation from the Laboratory, AIRS II, and Different Subject Research. Journal of the Atmospheric Sciences 66, 2888–2899, https://doi.org/10.1175/2009jas2883.1 (2009).

45.

Fukuta, N. & Takahashi, T. The Development of Atmospheric Ice Crystals: A Abstract of Findings in Vertical Supercooled Cloud Tunnel Research. Journal of the Atmospheric Sciences 56, 1963–1979 (1999).

46.

Liu, L. et al. Complete Radar Observations of Clouds and Precipitation over the Tibetan Plateau and Preliminary Evaluation of Cloud Properties. Journal of Meteorological Analysis 29, 546–561 (2015).

47.

Zhao, P. et al. The Third Atmospheric Scientific Experiment for Understanding the Earth-Environment Coupled System over the Tibetan Plateau and Its Results. Bulletin of the American Meteorological Society 99 (2017).


Supply hyperlink
asubhan

wordpress autoblog

amazon autoblog

affiliate autoblog

wordpress web site

web site improvement

Show More

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Close