Chemistry

Polaron spin dynamics in high-mobility polymeric semiconductors


1.

Di, D. et al. Excessive-performance light-emitting diodes primarily based on carbene–metal-amides. Science 356, 159–163 (2017).

2.

Weiss, L. R. et al. Strongly exchange-coupled triplet pairs in an natural semiconductor. Nat. Phys. 13, 176–181 (2017).

three.

Rao, A. & Good friend, R. H. Harnessing singlet exciton fission to interrupt the Shockley–Queisser restrict. Nat. Rev. Mater. 2, 17063–12 (2017).

four.

Wagemans, W. & Koopmans, B. Spin transport and magnetoresistance in natural semiconductors. Phys. Standing Solidi B 248, 1029–1041 (2011).

5.

Wohlgenannt, M. Natural magnetoresistance and spin diffusion in natural semiconductor skinny movie gadgets. Phys. Standing Solidi Speedy. Res. Lett. 6, 229–242 (2012).

6.

Watanabe, S. et al. Polaron spin present transport in natural semiconductors. Nat. Phys. 10, 308–313 (2014).

7.

Wang, S.-J. et al. Lengthy spin diffusion lengths in doped conjugated polymers as a result of enhanced alternate coupling. Nat. Electron. 2, 98–107 (2019).

eight.

Ando, Okay., Watanabe, S., Mooser, S., Saitoh, E. & Sirringhaus, H. Answer-processed natural spin–cost converter. Nat. Mater. 12, 622–627 (2013).

9.

Solar, D. et al. Inverse spin Corridor impact from pulsed spin present in natural semiconductors with tunable spin–orbit coupling. Nat. Mater. 15, 863–869 (2016).

10.

Sanvito, S. The rise of spinterface science. Nat. Phys. 6, 562–564 (2010).

11.

Shao, M. et al. The isotopic results of deuteration on optoelectronic properties of conducting polymers. Nat. Commun. 5, 3180 (2014).

12.

Steyrleuthner, R. et al. Affect of morphology on polaron delocalization in a semicrystalline conjugated polymer. Phys. Chem. Chem. Phys. 19, 3627–3639 (2017).

13.

Schott, S. et al. Tuning the efficient spin–orbit coupling in molecular semiconductors. Nat. Commun. eight, 15200 (2017).

14.

McNellis, E. R., Schott, S., Sirringhaus, H. & Sinova, J. Molecular tuning of the magnetic response in natural semiconductors. Phys. Rev. Mater. 2, 074405 (2018).

15.

Matsui, H., Hasegawa, T., Tokura, Y., Hiraoka, M. & Yamada, T. Polaron motional narrowing of electron spin resonance in natural field-effect transistors. Phys. Rev. Lett. 100, 126601 (2008).

16.

Matsui, H., Mishchenko, A. S. & Hasegawa, T. Distribution of localized states from high-quality evaluation of electron spin resonance spectra in natural transistors. Phys. Rev. Lett. 104, 056602 (2010).

17.

Marumoto, Okay. et al. Microscopic mechanisms behind the excessive mobility in rubrene single-crystal transistors as revealed by field-induced electron spin resonance. Phys. Rev. B 83, 075302 (2011).

18.

Matsui, H. et al. Correlation between interdomain service hopping and obvious mobility in polycrystalline natural transistors as investigated by electron spin resonance. Phys. Rev. B 85, 035308 (2012).

19.

Tsurumi, J. et al. Coexistence of ultra-long spin leisure time and coherent cost transport in natural single-crystal semiconductors. Nat. Phys. 13, 994–998 (2017).

20.

Harmon, N. J. & Flatté, M. E. Distinguishing spin leisure mechanisms in natural semiconductors. Phys. Rev. Lett. 110, 176602 (2013).

21.

Yu, Z. G., Ding, F. & Wang, H. Hyperfine interplay and its results on spin dynamics in natural solids. Phys. Rev. B 87, 205446 (2013).

22.

Yu, Z. G. Spin–orbit coupling, spin leisure, and spin diffusion in natural solids. Phys. Rev. Lett. 106, 106602 (2011).

23.

Yu, Z. G. Spin–orbit coupling and its results in natural solids. Phys. Rev. B 85, 115201 (2012).

24.

Yu, Z. G. Microscopic principle of electron spin leisure in N@C60. Phys. Rev. B 77, 821–826 (2008).

25.

Xiong, Z. H., Wu, D., Valy Vardeny, Z. & Shi, J. Large magnetoresistance in natural spin-valves. Nature 427, 821–824 (2004).

26.

Pramanik, S. et al. Commentary of extraordinarily lengthy spin leisure occasions in an natural nanowire spin valve. Nat. Nanotechnol. 2, 216–219 (2007).

27.

Shim, J. H. et al. Giant spin diffusion size in an amorphous natural semiconductor. Phys. Rev. Lett. 100, 226603 (2008).

28.

Mooser, S., Cooper, J. F. Okay., Banger, Okay. Okay., Wunderlich, J. & Sirringhaus, H. Spin injection and transport in a solution-processed natural semiconductor at room temperature. Phys. Rev. B 85, 235202 (2012).

29.

Jiang, S. W. et al. Change-dominated pure spin present transport in Alq3 molecules. Phys. Rev. Lett. 115, 086601 (2015).

30.

McCamey, D. R. et al. Hyperfine-field-mediated spin beating in electrostatically sure cost service pairs. Phys. Rev. Lett. 104, 13–14 (2010).

31.

Nguyen, T. D., Gautam, B. R., Ehrenfreund, E. & Vardeny, Z. V. Magnetoconductance response in unipolar and bipolar natural diodes at ultrasmall fields. Phys. Rev. Lett. 105, 166804 (2010).

32.

Szulczewski, G., Sanvito, S. & Coey, M. A spin of their very own. Nat. Mater. eight, 693–695 (2009).

33.

Grünewald, M. et al. Tunneling anisotropic magnetoresistance in natural spin valves. Phys. Rev. B 84, 125208 (2011).

34.

Grünewald, M. et al. Vertical natural spin valves in perpendicular magnetic fields. Phys. Rev. B 88, 085319 (2013).

35.

Wid, O. et al. Investigation of the unidirectional spin warmth conveyer impact in a 200 nm skinny yttrium iron garnet movie. Sci. Rep. 6, 28233 (2016).

36.

Li, L., Lu, N., Liu, M. & Bässler, H. Common Einstein relation mannequin in disordered natural semiconductors below quasiequilibrium. Phys. Rev. B 90, 214107 (2014).

37.

Wetzelaer, G. A. H., Koster, L. J. A. & Blom, P. W. M. Validity of the Einstein relation in disordered natural semiconductors. Phys. Rev. Lett. 107, 066605 (2011).

38.

Yu, Z. G. Suppression of the Hanle impact in natural spintronic gadgets. Phys. Rev. Lett. 111, 016601 (2013).

39.

Venkateshvaran, D. et al. Approaching disorder-free transport in high-mobility conjugated polymers. Nature 515, 384–388 (2014).

40.

Gruber, M. et al. Enabling high-mobility, ambipolar charge-transport in a DPP-benzotriazole copolymer by side-chain engineering. Chem. Sci. 6, 6949–6960 (2015).

41.

Schott, S. et al. Cost-transport anisotropy in a uniaxially aligned diketopyrrolopyrrole-based copolymer. Adv. Mater. 27, 7356–7364 (2015).

42.

Yan, H. et al. A high-mobility electron-transporting polymer for printed transistors. Nature 457, 679–686 (2009).

43.

Abragam, A. The Ideas of Nuclear Magnetism (Oxford College Press, 1961).

44.

Redfield, A. G. On the idea of leisure processes. IBM J. Res. Dev. 1, 19–31 (1957).

45.

Slichter, C. P. Ideas of Magnetic Resonance (Springer, 2013).

46.

Mishchenko, A. S., Matsui, H. & Hasegawa, T. Distribution of localized states from high-quality evaluation of electron spin resonance spectra of natural semiconductors: bodily that means and methodology. Phys. Rev. B 85, 085211 (2012).

47.

Baker, W. J., Keevers, T. L., Lupton, J. M., McCamey, D. R. & Boehme, C. Sluggish hopping and spin dephasing of coulombically sure polaron pairs in an natural semiconductor at room temperature. Phys. Rev. Lett. 108, 267601 (2012).

48.

Zhang, X. et al. Molecular origin of excessive field-effect mobility in an indacenodithiophene–benzo-thiadiazole copolymer. Nat. Commun. four, 2238 (2013).

49.

Liu, T. & Troisi, A. Understanding the microscopic origin of the very excessive cost mobility in PBTTT: tolerance of thermal dysfunction. Adv. Funct. Mater. 24, 925–933 (2013).

50.

Fornari, R. P. & Troisi, A. Principle of cost hopping alongside a disordered polymer chain. Phys. Chem. Chem. Phys. 16, 9997–10007 (2014).

51.

Vezie, M. S. et al. Exploring the origin of excessive optical absorption in conjugated polymers. Nat. Mater. 15, 746–753 (2016).

52.

Kang, Okay. et al. 2D coherent cost transport in extremely ordered conducting polymers doped by strong state diffusion. Nat. Mater. 15, 896–902 (2016).

53.

Fujimoto, R. et al. Molecular doping in natural semiconductors: absolutely solution-processed, vacuum-free doping with metallic–natural complexes in an orthogonal solvent. J. Mater. Chem. C. 5, 12023–12030 (2017).

54.

Marcon, V. et al. Understanding construction–mobility relations for perylene tetracarboxydiimide derivatives. J. Am. Chem. Soc. 131, 11426–11432 (2009).

55.

Might, F., Marcon, V., Hansen, M. R., Grozema, F. & Andrienko, D. Relationship between supramolecular meeting and charge-carrier mobility in perylenediimide derivatives: the affect of aspect chains. J. Mater. Chem. 21, 9538–9545 (2011).

56.

Anderson, M. et al. Displacement of polarons by vibrational modes in doped conjugated polymers. Phys. Rev. Mater. 1, 055604–055609 (2017).

57.

McCulloch, I. et al. Liquid-crystalline semiconducting polymers with excessive charge-carrier mobility. Nat. Mater. 5, 328–333 (2006).

58.

Di Pietro, R. et al. Coulomb enhanced cost transport in semicrystalline polymer semiconductors. Adv. Funct. Mater. 26, 8011–8022 (2016).

59.

Statz, M. et al. On the manifestation of electron–electron interactions within the thermoelectric response of semicrystalline conjugated polymers with low energetic dysfunction. Commun. Phys. 1, 1319 (2018).

60.

DeLongchamp, D. M. et al. Controlling the orientation of terraced nanoscale ‘ribbons’ of a poly(thiophene) semiconductor. ACS Nano three, 780–787 (2009).

61.

Wang, C. et al. Microstructural origin of excessive mobility in high-performance poly(thieno-thiophene) thin-film transistors. Adv. Mater. 22, 697–701 (2010).

62.

Schuettfort, T. et al. Microstructure of polycrystalline pBTTT movies: area mapping and construction formation. ACS Nano 6, 1849–1864 (2012).

63.

Beljonne, D. et al. Optical signature of delocalized polarons in conjugated polymers. Adv. Funct. Mater. 11, 229–234 (2001).

64.

Chew, A. R. et al. Unraveling the impact of conformational and digital dysfunction within the cost transport processes of semiconducting polymers. Adv. Funct. Mater. 28, 1804142 (2018).

65.

Fratini, S., Mayou, D. & Ciuchi, S. The transient localization state of affairs for cost transport in crystalline natural supplies. Adv. Funct. Mater. 26, 2292–2315 (2016).

66.

Lemaur, V. et al. On the supramolecular packing of excessive electron mobility naphthalene diimide copolymers: the proper registry of uneven branched alkyl aspect chains. Macromolecules 46, 8171–8178 (2013).

67.

Kronemeijer, A. J. et al. Two-dimensional service distribution in top-gate polymer field-effect transistors: correlation between width of density of localized states and Urbach vitality. Adv. Mater. 26, 728–733 (2014).

68.

Nikolka, M. et al. Excessive operational and environmental stability of high-mobility conjugated polymer field-effect transistors via the usage of molecular components. Nat. Mater. 16, 356–362 (2016).

69.

Lu, G. et al. Average doping results in excessive efficiency of semiconductor/insulator polymer mix transistors. Nat. Commun. four, 1588 (2013).


Supply hyperlink
asubhan

wordpress autoblog

amazon autoblog

affiliate autoblog

wordpress web site

web site improvement

Show More

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Close