Purification of tubulin with managed post-translational modifications by polymerization–depolymerization cycles


Borisy, G. G. & Taylor, E. W. The mechanism of motion of colchicine. Binding of colchincine-3H to mobile protein. J. Cell Biol. 34, 525–533 (1967).


Weisenberg, R. C. Microtubule formation in vitro in options containing low calcium concentrations. Science 177, 1104–1105 (1972).


Borisy, G. G. & Olmsted, J. B. Nucleated meeting of microtubules in porcine mind extracts. Science 177, 1196–1197 (1972).


Kirschner, M. W. & Williams, R. C. The mechanism of microtubule meeting in vitro. J. Supramol. Struct. 2, 412–428 (1974).


Margolis, R. L. & Wilson, L. Addition of colchicine-tubulin advanced to microtubule ends: the mechanism of substoichiometric colchicine poisoning. Proc. Natl. Acad. Sci. USA 74, 3466–3470 (1977).


Murphy, D. B. & Borisy, G. G. Affiliation of high-molecular-weight proteins with microtubules and their function in microtubule meeting in vitro. Proc. Natl. Acad. Sci. USA 72, 2696–2700 (1975).


Margolis, R. L. & Wilson, L. Reverse finish meeting and disassembly of microtubules at regular state in vitro. Cell 13, 1–eight (1978).


Mitchison, T. & Kirschner, M. Dynamic instability of microtubule development. Nature 312, 237–242 (1984).


Axelrod, D. Cell-substrate contacts illuminated by whole inside reflection fluorescence. J. Cell Biol. 89, 141–145 (1981).


Dogterom, M. & Surrey, T. Microtubule group in vitro. Curr. Opin. Cell Biol. 25, 23–29 (2013).


Nedelec, F. J., Surrey, T., Maggs, A. C. & Leibler, S. Self-organization of microtubules and motors. Nature 389, 305–308 (1997).


Bieling, P., Telley, I. A. & Surrey, T. A minimal midzone protein module controls formation and size of antiparallel microtubule overlaps. Cell 142, 420–432 (2010).


Roostalu, J. et al. Directional switching of the kinesin Cin8 by means of motor coupling. Science 332, 94–99 (2011).


Hendricks, A. G., Goldman, Y. E. & Holzbaur, E. L. F. Reconstituting the motility of remoted intracellular cargoes. Strategies Enzymol. 540, 249–262 (2014).


Schaedel, L. et al. Microtubules self-repair in response to mechanical stress. Nat. Mater. 14, 1156–1163 (2015).


Vallee, R. B. Reversible meeting purification of microtubules with out assembly-promoting brokers and additional purification of tubulin, microtubule-associated proteins, and MAP fragments. Strategies Enzymol. 134, 89–104 (1986).


Castoldi, M. & Popov, A. V. Purification of mind tubulin by means of two cycles of polymerization-depolymerization in a high-molarity buffer. Protein Expr. Purif. 32, 83–88 (2003).


Wloga, D., Joachimiak, E., Louka, P. & Gaertig, J. Posttranslational modifications of tubulin and cilia. Chilly Spring Harb. Perspect. Biol. 9, a028159 (2017).


Janke, C. The tubulin code: molecular elements, readout mechanisms, and features. J. Cell Biol. 206, 461–472 (2014).


Barisic, M. et al. Microtubule detyrosination guides chromosomes throughout mitosis. Science 348, 799–803 (2015).


Nirschl, J. J., Magiera, M. M., Lazarus, J. E., Janke, C. & Holzbaur, E. L. F. Alpha-tubulin tyrosination and CLIP-170 phosphorylation regulate the initiation of dynein-driven transport in neurons. Cell Rep. 14, 2637–2652 (2016).


Guedes-Dias, P. et al. Kinesin-Three responds to native microtubule dynamics to focus on synaptic cargo supply to the presynapse. Curr. Biol. 29, 268–282.e8 (2019).


Hiller, G. & Weber, Ok. Radioimmunoassay for tubulin: a quantitative comparability of the tubulin content material of various established tissue tradition cells and tissues. Cell 14, 795–804 (1978).


Bulinski, J. C. & Borisy, G. G. Self-assembly of microtubules in extracts of cultured HeLa cells and the identification of HeLa microtubule-associated proteins. Proc. Natl. Acad. Sci. USA 76, 293–297 (1979).


Farrell, Ok. W. Isolation of tubulin from nonneural sources. Strategies Enzymol. 85(Pt B), 385–393 (1982).


Banerjee, A., Roach, M. C., Trcka, P. & Ludueña, R. F. Preparation of a monoclonal antibody particular for the category IV isotype of beta-tubulin. Purification and meeting of alpha beta II, alpha beta III, and alpha beta IV tubulin dimers from bovine mind. J. Biol. Chem. 267, 5625–5630 (1992).


Newton, C. N. et al. Intrinsically sluggish dynamic instability of HeLa cell microtubules in vitro. J. Biol. Chem. 277, 42456–42462 (2002).


Lacroix, B. & Janke, C. Era of differentially polyglutamylated microtubules. Strategies Mol. Biol. 777, 57–69 (2011).


Widlund, P. O. et al. One-step purification of assembly-competent tubulin from various eukaryotic sources. Mol. Biol. Cell 23, 4393–4401 (2012).


Howes, S. C. et al. Structural variations between yeast and mammalian microtubules revealed by cryo-EM. J. Cell Biol. 216, 2669–2677 (2017).


Pamula, M. C., Ti, S.-C. & Kapoor, T. M. The structured core of human beta tubulin confers isotype-specific polymerization properties. J. Cell Biol. 213, 425–433 (2016).


Vemu, A., Atherton, J., Spector, J. O., Moores, C. A. & Roll-Mecak, A. Tubulin isoform composition tunes microtubule dynamics. Mol. Biol. Cell 28, 3564–3572 (2017).


von Loeffelholz, O. et al. Nucleotide- and Mal3-dependent modifications in fission yeast microtubules counsel a structural plasticity view of dynamics. Nat. Commun. eight, 2110 (2017).


Chaaban, S. et al. The construction and dynamics of C. elegans tubulin reveals the mechanistic foundation of microtubule development. Dev. Cell 47, 191–204.e8 (2018).


Alper, J. D., Decker, F., Agana, B. & Howard, J. The motility of axonemal dynein is regulated by the tubulin code. Biophys. J. 107, 2872–2880 (2014).


Minoura, I. et al. Overexpression, purification, and useful evaluation of recombinant human tubulin dimer. FEBS Lett. 587, 3450–3455 (2013).


Vemu, A. et al. Construction and dynamics of single-isoform recombinant neuronal human tubulin. J. Biol. Chem. 291, 12907–12915 (2016).


Ti, S.-C., Alushin, G. M. & Kapoor, T. M. Human beta-tubulin isotypes can regulate microtubule protofilament quantity and stability. Dev. Cell 47, 175–190.e5 (2018).


Uchimura, S. et al. A flipped ion pair on the dynein-microtubule interface is important for dynein motility and ATPase activation. J. Cell Biol. 208, 211–222 (2015).


Denoulet, P., Eddé, B. & Gros, F. Differential expression of a number of neurospecific beta-tubulin mRNAs within the mouse mind throughout improvement. Gene 50, 289–297 (1986).


Track, Y. et al. Transglutaminase and polyamination of tubulin: posttranslational modification for stabilizing axonal microtubules. Neuron 78, 109–123 (2013).


Belvindrah, R. et al. Mutation of the alpha-tubulin Tuba1a results in straighter microtubules and perturbs neuronal migration. J. Cell Biol. 216, 2443–2461 (2017).


Breuss, M. et al. Mutations within the murine homologue of TUBB5 trigger microcephaly by perturbing cell cycle development and inducing p53 related apoptosis. Improvement 143, 1126–33 (2016).


Latremoliere, A. et al. Neuronal-specific TUBB3 isn’t required for regular neuronal perform however is important for well timed axon regeneration. Cell Rep. 24, 1865–1879.e9 (2018).


Magiera, M. M. et al. Extreme tubulin polyglutamylation causes neurodegeneration and perturbs neuronal transport. EMBO J. 37, e100440 (2018).


Morley, S. J. et al. Acetylated tubulin is important for contact sensation in mice. eLife 5, e20813 (2016).


Kalebic, N. et al. Tubulin acetyltransferase alphaTAT1 destabilizes microtubules independently of its acetylation exercise. Mol. Cell. Biol. 33, 1114–1123 (2013).


Maurer, S. P., Bieling, P., Cope, J., Hoenger, A. & Surrey, T. GTPγS microtubules mimic the rising microtubule finish construction acknowledged by end-binding proteins (EBs). Proc. Natl. Acad. Sci. USA 108, 3988–3993 (2011).


Sandblad, L. et al. The Schizosaccharomyces pombe EB1 homolog Mal3p binds and stabilizes the microtubule lattice seam. Cell 127, 1415–1424 (2006).


Janke, C. et al. Tubulin polyglutamylase enzymes are members of the TTL area protein household. Science 308, 1758–1762 (2005).


van Dijk, J. et al. A focused multienzyme mechanism for selective microtubule polyglutamylation. Mol. Cell 26, 437–448 (2007).


Rogowski, Ok. et al. Evolutionary divergence of enzymatic mechanisms for posttranslational polyglycylation. Cell 137, 1076–1087 (2009).


Rogowski, Ok. et al. A household of protein-deglutamylating enzymes related to neurodegeneration. Cell 143, 564–578 (2010).


Aillaud, C. et al. Vasohibins/SVBP are tubulin carboxypeptidases (TCPs) that regulate neuron differentiation. Science 358, 1448–1453 (2017).


Nieuwenhuis, J. et al. Vasohibins encode tubulin detyrosinating exercise. Science 358, 1453–1456 (2017).


Akella, J. S. et al. MEC-17 is an alpha-tubulin acetyltransferase. Nature 467, 218–222 (2010).


Shida, T., Cueva, J. G., Xu, Z., Goodman, M. B. & Nachury, M. V. The foremost alpha-tubulin Ok40 acetyltransferase alphaTAT1 promotes speedy ciliogenesis and environment friendly mechanosensation. Proc. Natl. Acad. Sci. USA 107, 21517–21522 (2010).


Magiera, M. M. & Janke, C. in Strategies in Cell Biology Vol. 115 (eds Correia, J. J. & Wilson, L.) 247–267 (Tutorial Press, Burlington, MA, 2013).


Hubbert, C. et al. HDAC6 is a microtubule-associated deacetylase. Nature 417, 455–458 (2002).


Matsuyama, A. et al. In vivo destabilization of dynamic microtubules by HDAC6-mediated deacetylation. EMBO J. 21, 6820–6831 (2002).

Supply hyperlink

wordpress autoblog

amazon autoblog

affiliate autoblog

wordpress web site

web site improvement

Show More

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *