Chemistry

Quantified forces between HepG2 hepatocarcinoma and WA07 pluripotent stem cells with pure biomaterials correlate with in vitro cell habits


1.

Schlie-Wolter, S., Ngezahayo, A. & Chichkov, B. N. The selective position of ECM elements on cell adhesion, morphology, proliferation and communication in vitro. Exp. Cell Res. 319, 1553–1561 (2013).

2.

Inman, J. L., Robertson, C., Mott, J. D. & Bissell, M. J. Mammary gland improvement: cell destiny specification, stem cells and the microenvironment. Improvement 142, 1028–1042 (2015).

Three.

Kaukonen, R. et al. Regular stroma suppresses most cancers cell proliferation by way of mechanosensitive regulation of JMJD1a-mediated transcription. Nat. Commun. 7, 12237 (2016).

four.

Lee, E. Y., Parry, G. & Bissell, M. J. Modulation of secreted proteins of mouse mammary epithelial cells by the collagenous substrata. J. Cell Biol. 98, 146–155 (1984).

5.

Heydarkhan-Hagvall, S. et al. Three-dimensional electrospun ECM-based hybrid scaffolds for cardiovascular tissue engineering. Biomaterials 29, 2907–2914 (2008).

6.

Gieni, R. S. & Hendzel, M. J. Mechanotransduction from the ECM to the genome: are the items now in place? J. Cell. Biochem. 104, 1964–1987 (2008).

7.

Rao Pattabhi, S., Martinez, J. S. & Keller, T. C. third Decellularized ECM results on human mesenchymal stem cell stemness and differentiation. Differentiation 88, 131–143 (2014).

eight.

Taubenberger, A. V., Hutmacher, D. W. & Muller, D. J. Single-cell pressure spectroscopy, an rising device to quantify cell adhesion to biomaterials. Tissue Eng. Half B. Rev. 20, 40–55 (2014).

9.

Oryan, A., Kamali, A., Moshiri, A., Baharvand, H. & Daemi, H. Chemical crosslinking of biopolymeric scaffolds: Present information and future instructions of crosslinked engineered bone scaffolds. Int. J. Biol. Macromol. 107(Pt A), 678–688 (2018).

10.

Bhattacharya, M. et al. Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell tradition. J. Management. Launch 164, 291–298 (2012).

11.

Malinen, M. M. et al. Differentiation of liver progenitor cell line to practical organotypic cultures in 3D nanofibrillar cellulose and hyaluronan-gelatin hydrogels. Biomaterials 35, 5110–5121 (2014).

12.

Rinner, B. et al. MUG-Mel2, a novel extremely pigmented and properly characterised NRAS mutated human melanoma cell line. Sci. Rep. 7, 2098 (2017).

13.

Lou, Y. R. et al. The usage of nanofibrillar cellulose hydrogel as a versatile three-dimensional mannequin to tradition human pluripotent stem cells. Stem Cells Dev. 23, 380–392 (2014).

14.

Lauren, P. et al. Technetium-99m-labeled nanofibrillar cellulose hydrogel for in vivo drug launch. Eur. J. Pharm. Sci. 65, 79–88 (2014).

15.

Hakkarainen, T. et al. Nanofibrillar cellulose wound dressing in pores and skin graft donor website remedy. J. Management. Launch 244, 292–301 (2016).

16.

Kanninen, L. Okay. et al. Laminin-511 and laminin-521-based matrices for environment friendly hepatic specification of human pluripotent stem cells. Biomaterials 103, 86–100 (2016).

17.

Humphries, M. J. Cell-substrate adhesion assays. Curr. Protoc. Cell. Biol. Chapter 9, Unit 9.1 (2001).

18.

Kucik, D. F. Measurement of adhesion below circulate circumstances. Curr. Protoc. Cell. Biol. Chapter 9, Unit 9.6 (2003).

19.

Garcia, A. J., Ducheyne, P. & Boettiger, D. Quantification of cell adhesion utilizing a spinning disc system and software to surface-reactive supplies. Biomaterials 18, 1091–1098 (1997).

20.

Forrester, J. V. & Lackie, J. M. Impact of hyaluronic acid on neutrophil adhesion. J. Cell. Sci. 50, 329–344 (1981).

21.

Forrester, J. V. & Lackie, J. M. Adhesion of neutrophil leucocytes below circumstances of circulate. J. Cell. Sci. 70, 93–110 (1984).

22.

Sung, Okay. L., Sung, L. A., Crimmins, M., Burakoff, S. J. & Chien, S. Dedication of junction avidity of cytolytic T cell and goal cell. Science 234, 1405–1408 (1986).

23.

Kollmannsberger, P. & Fabry, B. Excessive-force magnetic tweezers with pressure suggestions for organic functions. Rev. Sci. Instrum. 78, 114301 (2007).

24.

Walter, N., Selhuber, C., Kessler, H. & Spatz, J. P. Mobile unbinding forces of preliminary adhesion processes on nanopatterned surfaces probed with magnetic tweezers. Nano Lett. 6, 398–402 (2006).

25.

Matthews, B. D. et al. Mechanical properties of particular person focal adhesions probed with a magnetic microneedle. Biochem. Biophys. Res. Commun. 313, 758–764 (2004).

26.

Andersson, M. et al. Utilizing optical tweezers for measuring the interplay forces between human bone cells and implant surfaces: System design and pressure calibration. Rev. Sci. Instrum. 78, 074302 (2007).

27.

Neuman, Okay. C. & Nagy, A. Single-molecule pressure spectroscopy: optical tweezers, magnetic tweezers and atomic pressure microscopy. Nat. Strategies 5, 491–505 (2008).

28.

Friedrichs, J. et al. A sensible information to quantify cell adhesion utilizing single-cell pressure spectroscopy. Strategies 60, 169–178 (2013).

29.

Li, F., Redick, S. D., Erickson, H. P. & Moy, V. T. Drive measurements of the alpha5beta1 integrin-fibronectin interplay. Biophys. J. 84, 1252–1262 (2003).

30.

Taubenberger, A. V., Quent, V. M., Thibaudeau, L., Clements, J. A. & Hutmacher, D. W. Delineating breast most cancers cell interactions with engineered bone microenvironments. J. Bone Miner. Res. 28, 1399–1411 (2013).

31.

Yermolenko, I. S. et al. Origin of the nonadhesive properties of fibrinogen matrices probed by pressure spectroscopy. Langmuir 26, 17269–17277 (2010).

32.

Ducker, W. A., Senden, T. J. & Pashley, R. M. Direct measurement of colloidal forces utilizing an atomic pressure microscope. Nature 353, 239–241 (1991).

33.

Muñoz Javier, A. et al. Mixed atomic pressure microscopy and optical microscopy measurements as a way to research particle uptake by cells. Small 2, 394–400 (2006).

34.

Hagbard, L. et al. Growing outlined substrates for stem cell tradition and differentiation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 373, 20170230 (2018).

35.

Pietilä, M., Ivaska, J. & Mani, S. A. Whom accountable for metastasis, the epithelial-mesenchymal transition or the tumor microenvironment? Most cancers Lett. 380, 359–368 (2016).

36.

Xu, R., Boudreau, A. & Bissell, M. J. Tissue structure and performance: dynamic reciprocity by way of extra- and intra-cellular matrices. Most cancers Metastasis Rev. 28, 167–176 (2009).

37.

Oikawa, Y. et al. Melanoma cells produce a number of laminin isoforms and strongly migrate on α5 laminin(s) by way of a number of integrin receptors. Exp Cell Res. 317, 1119–33 (2011).

38.

Lu, P., Weaver, V. M. & Werb, Z. The extracellular matrix: A dynamic area of interest in most cancers development. J Cell Biol. 196, 395–406 (2012).

39.

Pouliot, N. & Kusuma, N. Laminin-511: a multi-functional adhesion protein regulating cell migration, tumor invasion and metastasis. Cell Adh Migr. 7, 142–9 (2013).

40.

Gilkes, D. M., Semenza, G. L. & Wirtz, D. Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nat Rev Most cancers. 14, 430–9 (2014).

41.

Pickup, M. W., Mouw, J. Okay. & Weaver, V. M. The extracellular matrix modulates the hallmarks of most cancers. EMBO Rep. 15, 1243–53 (2014).

42.

Barcus, C. E. et al. Elevated collagen-I augments tumor progressive alerts, intravasation and metastasis of prolactin-induced estrogen receptor alpha optimistic mammary tumor cells. Breast Most cancers Res. 19, 9 (2017).

43.

Qin, Y., Rodin, S., Simonson, O. E. & Hollande, F. Laminins and most cancers stem cells: Companions in crime? Semin Most cancers Biol. 45, Three–12 (2017).

44.

Ueda, J. et al. Analysis of the Impression of Preoperative Values of Hyaluronic Acid and Kind IV Collagen on the End result of Sufferers with Hepatocellular Carcinoma After Hepatectomy. J Nippon Med Sch. 85, 221–227 (2018).

45.

Chen, D. et al. Affiliation of the Collagen Signature within the Tumor Microenvironment With Lymph Node Metastasis in Early Gastric Most cancers. JAMA Surg. 154, e185249 (2019).

46.

Stolz, D. B. & Michalopoulos, G. Okay. Synergistic enhancement of EGF, however not HGF, stimulated hepatocyte motility by TGF-beta 1 in vitro. J. Cell. Physiol. 170, 57–68 (1997).

47.

Zheng, X. et al. Collagen I promotes hepatocellular carcinoma cell proliferation by regulating integrin beta1/FAK signaling pathway in nonalcoholic fatty liver. Oncotarget eight, 95586–95595 (2017).

48.

Rodin, S. et al. Clonal culturing of human embryonic stem cells on laminin-521/E-cadherin matrix in outlined and xeno-free atmosphere. Nat. Commun. 5, 3195 (2014).

49.

Cameron, Okay. et al. Recombinant Laminins Drive the Differentiation and Self-Group of hESC-Derived Hepatocytes. Stem Cell. Reviews 5, 1250–1262 (2015).

50.

Prockop, D. J. What holds us collectively? Why do a few of us disintegrate? What can we do about it? Matrix Biol. 16, 519–528 (1998).

51.

Di Lullo, G. A., Sweeney, S. M., Korkko, J., Ala-Kokko, L. & San Antonio, J. D. Mapping the ligand-binding websites and disease-associated mutations on probably the most considerable protein within the human, kind I collagen. J. Biol. Chem. 277, 4223–4231 (2002).

52.

Parkin, J. D. et al. Mapping structural landmarks, ligand binding websites, and missense mutations to the collagen IV heterotrimers predicts main practical domains, novel interactions, and variation in phenotypes in inherited ailments affecting basement membranes. Hum. Mutat. 32, 127–143 (2011).

53.

Beck, Okay., Hunter, I. & Engel, J. Construction and performance of laminin: anatomy of a multidomain glycoprotein. FASEB J. four, 148–160 (1990).

54.

Aumailley, M. et al. A simplified laminin nomenclature. Matrix Biol. 24, 326–332 (2005).

55.

Nugroho, R. W. N. et al. Quantifying the interactions between biomimetic biomaterials –collagen I, collagen IV, laminin 521 and cellulose nanofibrils– by colloidal probe microscopy. Colloids Surf. B Biointerfaces 173, 571–580 (2019).

56.

Goffin, A. J., Rajadas, J. & Fuller, G. G. Interfacial circulate processing of collagen. Langmuir 26, 3514–3521 (2010).

57.

Valle-Delgado, J. J., Johansson, L. S. & Osterberg, M. Bioinspired lubricating movies of cellulose nanofibrils and hyaluronic acid. Colloids Surf. B Biointerfaces 138, 86–93 (2016).

58.

Berger, E., Vega, N., Weiss-Gayet, M. & Geloen, A. Gene Community Evaluation of Glucose Linked Signaling Pathways and Their Position in Human Hepatocellular Carcinoma Cell Development and Survival in HuH7 and HepG2 Cell Strains. Biomed. Res. Int. 2015, 821761 (2015).

59.

Wadkin, L. E. et al. Dynamics of single human embryonic stem cells and their pairs: a quantitative evaluation. Sci. Rep. 7, 570 (2017).

60.

Sader, J. E. Calibration of rectangular atomic pressure microscope cantilevers. Rev. Sci. Instrum. 70, 3967 (1999).

61.

Carl, P. & Schillers, H. Elasticity measurement of residing cells with an atomic pressure microscope: knowledge acquisition and processing. Pflugers Arch. 457, 551–559 (2008).

62.

Perry, S. W., Epstein, L. G. & Gelbard, H. A. In situ trypan blue staining of monolayer cell cultures for everlasting fixation and mounting. BioTechniques 22, 1020–1024 (1997).

63.

Sorkio, A. E. et al. Biomimetic collagen I and IV double layer Langmuir-Schaefer movies as microenvironment for human pluripotent stem cell derived retinal pigment epithelial cells. Biomaterials 51, 257–269 (2015).

64.

Pastorino, L. et al. Oriented collagen nanocoatings for tissue engineering. Colloids Surf. B Biointerfaces 114, 372–378 (2014).

65.

Kim, T., Kahng, Y. H., Lee, T., Lee, Okay. & Kim, D. H. Graphene movies present steady cell attachment and biocompatibility with electrogenic main cardiac cells. Mol. Cells 36, 577–582 (2013).

66.

Xia, D. et al. The Ultrastructures and Mechanical Properties of the Descement’s Membrane in Fuchs Endothelial Corneal Dystrophy. Sci. Rep. 6, 23096 (2016).

67.

Canale, C., Petrelli, A., Salerno, M., Diaspro, A. & Dante, S. A brand new quantitative experimental strategy to research single cell adhesion on multifunctional substrates. Biosens. Bioelectron. 48, 172–179 (2013).

68.

Vancha, A. R. et al. Use of polyethyleneimine polymer in cell tradition as attachment issue and lipofection enhancer. BMC Biotechnol. four, 23 (2004).

69.

Mulansky, S., Saballus, M., Friedrichs, J., Bley, T. & Boschke, E. A novel protocol to arrange cell probes for the quantification of microbial adhesion and biofilm initiation on structured bioinspired surfaces utilizing AFM for single-cell pressure spectroscopy. Eng. Life Sci. 17, 833–840 (2017).

70.

Masuda, H. T. et al. Coating extracellular matrix proteins on a (Three-aminopropyl)triethoxysilane-treated glass substrate for improved cell tradition. BioTechniques 56, 172–179 (2014).

71.

Mao, S. et al. Measurement of Cell-Matrix Adhesion at Single-Cell Decision for Revealing the Features of Biomaterials for Adherent Cell Tradition. Anal. Chem. 90, 9637–9643 (2018).

72.

Friedrichs, J., Helenius, J. & Muller, D. J. Quantifying mobile adhesion to extracellular matrix elements by single-cell pressure spectroscopy. Nat. Protoc. 5, 1353–1361 (2010).

73.

Mould, A. P., Akiyama, S. Okay. & Humphries, M. J. Regulation of integrin alpha 5 beta 1-fibronectin interactions by divalent cations. Proof for distinct lessons of binding websites for Mn2+, Mg2+, and Ca2+. J. Biol. Chem. 270, 26270–26277 (1995).

74.

Pincet, F. et al. Ultraweak sugar-sugar interactions for transient cell adhesion. Biophys. J. 80, 1354–1358 (2001).

75.

Wang, H., Luo, X. & Leighton, J. Extracellular Matrix and Integrins in Embryonic Stem Cell Differentiation. Biochem. Insights eight, 15–21 (2015).

76.

Kawakami-Kimura, N. et al. Involvement of hepatocyte development consider elevated integrin expression on HepG2 cells triggered by adhesion to endothelial cells. Br. J. Most cancers 75, 47–53 (1997).

77.

Belkin, A. M. & Stepp, M. A. Integrins as receptors for laminins. Microsc. Res. Tech. 51, 280–301 (2000).

78.

Lou, Y. R. et al. Silica bioreplication preserves three-dimensional spheroid constructions of human pluripotent stem cells and HepG2 cells. Sci Rep. 5, 13635 (2015).

79.

Kiss, R. et al. Elasticity of human embryonic stem cells as decided by atomic pressure microscopy. J. Biomech. Eng. 133, 101009 (2011).

80.

Ofek, G. et al. Mechanical characterization of differentiated human embryonic stem cells. J. Biomech. Eng. 131, 061011 (2009).

81.

Courtenay, J. C., Sharma, R. I. & Scott, J. L. Current Advances in Modified Cellulose for Tissue Tradition Purposes. Molecules 23, 654 (2018).

82.

Courtenay, J. C. et al. Modulating cell response on cellulose surfaces; tuneable attachment and scaffold mechanics. Cellulose 25, 925–940 (2018).

83.

Taokaew, S., Phisalaphong, M. & Newby, B. Z. Modification of bacterial cellulose with organosilanes to enhance attachment and spreading of human fibroblasts. Cellulose 22, 2311–2324 (2015).

84.

Fu, L., Zhang, J. & Yang, G. Current standing and functions of bacterial cellulose-based supplies for pores and skin tissue restore. Carbohydr. Polym. 92, 1432–1442 (2013).


Supply hyperlink
asubhan

wordpress autoblog

amazon autoblog

affiliate autoblog

wordpress web site

web site improvement

Show More

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Close