Chemistry

Redefining passivity breakdown of tremendous duplex chrome steel by electrochemical operando synchrotron close to floor X-ray analyses


1.

Macdonald, D. D. The purpose defect mannequin for the passive state. J. Electrochem. Soc. 139, 3434–3449 (1992).

2.

Macdonald, D. D. Passivity—the important thing to our metals-based civilization. Pure Appl. Chem. 71, 951–978 (1999).

three.

Marcus, P. (ed.) Corrosion Mechanisms in Idea and Observe. Chap. three–5, (CRC Press, Taylor and Francis, Boca Raton, 2011).

four.

Cahn, R. W., Haasen, P., & Kramer, E. J. (eds). Supplies Science and Know-how. (Wiley, Hoboken, 2000).

5.

Schmuki, P. From bacon to obstacles: a evaluation on the passivity of metals and alloys. J. Strong State Electrochem. 6, 145–164 (2002).

6.

Stratmann, M. & Frankel, G. S., in Encyclopedia of Electrochemistry. (eds Bard, A. J. & Stratmann, M.) (Wiley, Hoboken, 2003).

7.

Marcus, P. & Maurice V. in Supplies Science and Know-how. (ed. Marcus, P.) (Wiley, Hoboken, 2006).

eight.

Macdonald, D. D. On the existence of our metals-based civilization. I. part house evaluation. J. Electrochem. Soc. 153, B213–B224 (2006).

9.

Marcus, P., Maurice, V. & Strehblow, H.-H. Localized corrosion (pitting): a mannequin of passivity breakdown together with the function of the oxide layer nanostructure. Corros. Sci. 50, 2698–2704 (2008).

10.

Macdonald, D. D. Passivity: enabler of our metals based mostly civilisation. Corros. Eng. Sci. Technol. 49, 143–155 (2014).

11.

Soltis, J. Passivity breakdown, pit initiation and propagation of pits in metallic supplies—evaluation. Corros. Sci. 90, 5–22 (2015).

12.

Benoit, M. et al. Comparability of various strategies for measuring the passive movie thickness on metals. Electrochim. Acta 201, 340–347 (2016).

13.

Strehblow, H.-H., Maurice, V. & Marcus, P., in Corrosion Mechanisms in Idea and Observe. (ed. Marcus, P.) 235–326 (CRC Press Taylor & Francis Group, Boca Raton, 2011).

14.

Maurice, V. & Marcus, P. Progress in corrosion science at atomic and nanometric scales. Prog. Mater. Sci. 95, 132–171 (2018).

15.

Frankel, G. S. Pitting corrosion of metals—a evaluation of the crucial elements. J. Electrochem. Soc. 145, 2186–2198 (1998).

16.

Davoodi, A. et al. Built-in AFM and SECM for in situ research of localized corrosion of Al alloys. Electrochim. Acta 52, 7697–7705 (2007).

17.

Davoodi, A. et al. Multianalytical and in situ research of localized corrosion of en aw 3003 alloy affect of intermetallic particles. J. Electrochem. Soc. 155, C138–C146 (2008).

18.

Davoodi, A. et al. The function of intermetallic particles in localized corrosion of an aluminum alloy studied by an SKPFM and built-in AFM-SECM. J. Electrochem. Soc. 155, C211–C218 (2008).

19.

Bettini, E. et al. Affect of metallic carbides on dissolution conduct of biomedical CoCrMo alloy: SEM, TEM and AFM research. Electrochim. Acta 56, 9413–9419 (2011).

20.

Bettini, E. et al. Affect of grain boundaries on dissolution conduct of a biomedical CoCrMo alloy: in-situ electrochemical-optical, AFM and SEM/TEM research. J. Electrochem. Soc. 159, C422–C427 (2012).

21.

Bettini, E. et al. Research of corrosion conduct of a 22% Cr duplex chrome steel: affect of nano-sized chromium nitrides and publicity temperature. Electrochim. Acta 113, 280–289 (2013).

22.

Anantha, Ok. H. et al. Correlative microstructure evaluation and in situ corrosion research of AISI 420 martensitic chrome steel for plastic molding functions. J. Electrochem. Soc. 164, C85–C93 (2017).

23.

Anantha, Ok. H. et al. In situ AFM research of localized corrosion processes of tempered AISI 420 martensitic chrome steel: impact of secondary hardening. J. Electrochem. Soc. 164, C810–C818 (2017).

24.

McBee, C. L. & Kruger, J. Nature of passive movies on iron-chromium alloys. Electrochim. Acta 17, 1337–1341 (1972).

25.

Tjong, S. C. TEM research of the passive movie on iron-chromium alloys. J. Mater. Sci. Lett. four, 6–eight (1985).

26.

Toney, M. F. et al. Atomic construction of the passive oxide movie shaped on iron. Phys. Rev. Lett. 79, 4282–4285 (1997).

27.

Maurice, V., Yang, W. P. & Marcus, P. XPS and STM research of passive movie shaped on Fe-22Cr (110) single-crystal surfaces. J. Electrochem. Soc. 143, 1182–1200 (1996).

28.

Maurice, V., Yang, W. P. & Marcus, P. X-ray photoelectron spectroscopy and scanning tunneling microscopy research of passive movies shaped on (100) Fe-18Cr-13Ni single crystal surfaces. J. Electrochem. Soc. 145, 909–920 (1998).

29.

Maurice, V. & Marcus, P. Passive movies on the nanoscale. Electrochim. Acta 84, 129–138 (2012).

30.

Massoud, T. et al. Nanoscale morphology and atomic construction of passive movies on chrome steel. J. Electrochem. Soc. 160, C232–C238 (2013).

31.

Jiang, R. et al. Impact of time on the traits of passive movie shaped on chrome steel. Appl. Surf. Sci. 412, 214–222 (2017).

32.

Zhang, X. & Shoesmith, D. W. Affect of temperature on passive movie properties on Ni–Cr–Mo Alloy C-2000. Corros. Sci. 76, 424–431 (2013).

33.

Santamaria, M. et al. Photoelectrochemical and XPS characterisation of oxide layers on 316L chrome steel grown in high-temperature water. J. Strong State Electrochem. 19, 3511–3519 (2015).

34.

Track, G. Transpassivation of Fe–Cr–Ni stainless steels. Corros. Sci. 47, 1953–1987 (2005).

35.

Fattah-alhosseini, A. et al. The transpassive dissolution mechanism of 316L chrome steel. Electrochim. Acta 54, 3645–3650 (2009).

36.

Mishra, A. Ok. & Shoesmith, D. W. The activation/depassivation of nickel–chromium–molybdenum alloys: an oxyanion or a pH impact—Half II. Electrochim. Acta 102, 328–335 (2013).

37.

Tcharkhtchi-Gillard, E. et al. Kinetics of the oxidation of chrome steel in scorching and concentrated nitric acid within the passive and transpassive domains. Corros. Sci. 107, 182–192 (2016).

38.

Al Saadi, S. et al. Passivity breakdown of 316L chrome steel throughout potentiodynamic polarization in NaCl resolution. Corros. Sci. 111, 720–727 (2016).

39.

Diéz-Pérez, I., Sanz, F. & Gorostiza, P. In situ research of metallic passive movies. Curr. Opin. Strong State Mater. Sci. 10, 144–152 (2006).

40.

Lutton, Ok. et al. Understanding multi-element alloy passivation in acidic options utilizing operando strategies. Electrochem. Commun. 80, 44–47 (2017).

41.

Olsson, C. O. A. The affect of nitrogen and molybdenum on passive movies shaped on the austeno-ferritic chrome steel 2205 studied by AES and XPS. Corros. Sci. 37, 467–479 (1995).

42.

Olsson, C. O. A. & Landolt, D. Passive movies on stainless steels—chemistry, construction and progress. Electrochim. Acta 48, 1093–1104 (2003).

43.

Abreu, C. M. et al. Comparative research of passive movies of various stainless steels developed on alkaline medium. Electrochim. Acta 49, 3049–3056 (2004).

44.

Femenia, M., Pan, J. & Leygraf, C. Characterization of ferrite austenite boundary area of duplex stainless steels by SAES. J. Electrochem. Soc. 151, B581–B585 (2004).

45.

Wang, H., Teeter, G. & Turner, J. Investigation of a duplex chrome steel as polymer electrolyte membrane gas cell bipolar plate materials. J. Electrochem. Soc. 152, B99–B104 (2005).

46.

Donik, Č. et al. XPS research of duplex chrome steel oxidized by oxygen atoms. Corros. Sci. 51, 827–832 (2009).

47.

Vignal, V. et al. Affect of the passive movie properties and residual stresses on the micro-electrochemical conduct of duplex stainless steels. Electrochim. Acta 55, 7118–7125 (2010).

48.

Luo, H. et al. Characterization of passive movie on 2205 duplex chrome steel in sodium thiosulphate resolution. Appl. Surf. Sci. 258, 631–639 (2011).

49.

Luo, H. et al. The electrochemical behaviour of 2205 duplex chrome steel in alkaline options with totally different pH within the presence of chloride. Electrochim. Acta 64, 211–220 (2012).

50.

Vignal, V. et al. Passive properties of lean duplex stainless steels after long-term ageing in air studied utilizing EBSD, AES, XPS and native electrochemical impedance spectroscopy. Corros. Sci. 67, 109–117 (2013).

51.

Wang, Y., Cheng, X. & Li, X. Electrochemical conduct and compositions of passive movies shaped on the constituent phases of duplex chrome steel with out coupling. Electrochem. Commun. 57, 56–60 (2015).

52.

Cui, Z. et al. Affect of temperature on the electrochemical and passivation conduct of 2507 tremendous duplex chrome steel in simulated desulfurized flue gasoline condensates. Corros. Sci. 118, 31–48 (2017).

53.

De Marco, R. & Veder, J.-P. In situ structural characterization of electrochemical methods utilizing synchrotron-radiation strategies. Traits Anal. Chem. 29, 528–537 (2010).

54.

Alam, M. T. et al. Understanding advanced electrochemical impedance spectroscopy in corrosion methods utilizing in-situ synchrotron radiation grazing incidence X-ray diffraction. Electroanalysis 28, 2166–2170 (2016).

55.

Ye, Y. et al. Utilizing delicate x-ray absorption spectroscopy to characterize electrode/electrolyte interfaces in-situ and operando. J. Electron Spectrosc. Relat. Phenom. 221, 2–9 (2017).

56.

Davenport, A. J. et al. In situ research of passive movie chemistry utilizing X-ray absorption spectroscopy. Corros. Sci. 35, 19–25 (1993).

57.

Frankel, G. S. et al. X-ray absorption research of electrochemicallly grown oxide movies on AlCr sputtered alloys; II: in situ research. J. Electrochem. Soc. 141, 83–90 (1994).

58.

Davenport, A. J. et al. In situ multielement XANES research of formation and discount of the oxide movie on chrome steel. J. Electrochem. Soc. 141, L6–L8 (1994).

59.

Davenport, A. J. Excessive decision in situ XANES investigation og the character of the passive movie on iron in a pH eight.four borate buffer. J. Electrochem. Soc. 142, 725–730 (1995).

60.

Schmuki, P. et al. Transpassive dissolution of Cr and sputter-deposited Cr oxides studied by in situ X-ray near-edge spectroscopy. J. Electrochem. Soc. 143, 3997–4005 (1996).

61.

Virtanen, S. et al. Dissolution of skinny iron oxide movies used as fashions for iron passive movies studied by in situ X-ray absorption near-edge spectroscopy. J. Electrochem. Soc. 144, 198–204 (1997).

62.

Oblonsky, L. J., Ryan, M. P. & Isaacs, H. S. In situ X-ray absorption close to edge construction research of the potential dependence of the formation of the passive movie on iron in borate buffe. J. Electrochem. Soc. 144, 2398–2404 (1997).

63.

Hu, Y. et al. In situ X-ray absorption effective construction and optical reflectance research of electrodeposited nickel hydrous oxide movies in alkaline electrolytes. Can. J. Chem. 75, 1721–1729 (1997).

64.

Schmuki, P. et al. Electrochemical conduct of Cr2O3/Fe2O3 synthetic passive movies studied by in situ XANES. J. Electrochem. Soc. 145, 791–801 (1998).

65.

Oblonsky, L. J., Ryan, M. P. & Isaacs, H. S. In situ dedication of the composition of floor movies shaped on Fe-Cr alloys. J. Electrochem. Soc. 145, 1922–1932 (1998).

66.

Virtanen, S. et al. Electrochemical conduct of Fe in phosphate options studied by in situ x-ray absorption close to edge construction. J. Electrochem. Soc. 146, 4087–4094 (1999).

67.

Oblonsky, L. J. & Ryan, M. P. In situ x-ray absorption near-edge construction research of the energetic and transpassive dissolution of passive movies on Ni and Ni-Cr alloys in zero.1 M H2SO4. J. Electrochem. Soc. 148, B405–B411 (2001).

68.

Virtanen, S., Schmuki, P. & Isaacs, H. S. In situ X-ray absorption close to edge construction research of mechanisms of passivity. Electrochim. Acta 47, 3117–3125 (2002).

69.

Le Bozec, N. et al. The function of chromate conversion coating within the filiform corrosion of coated aluminum alloys. J. Electrochem. Soc. 150, B561–B566 (2003).

70.

De Marco, R. et al. An in situ synchrotron radiation grazing incidence X-ray diffraction research of carbon dioxide corrosion. J. Electrochem. Soc. 152, B389–B392 (2005).

71.

Leyssens, Ok. et al. Simultaneous in situ time resolved SR-XRD and corrosion potential analyses to observe the corrosion on copper. Electrochem. Commun. 7, 1265–1270 (2005).

72.

De Marco, R. et al. An in situ electrochemical impedance spectroscopy/synchrotron radiation grazing incidence X-ray diffraction research of the affect of acetate on the carbon dioxide corrosion of delicate metal. Electrochim. Acta 52, 3746–3750 (2007).

73.

Ingham, B. et al. In situ synchrotron X-ray diffraction research of scale formation throughout CO2 corrosion of carbon metal in sodium and magnesium chloride options. Corros. Sci. 56, 96–104 (2012).

74.

Monnier, J. et al. XAS and XRD in situ characterisation of discount and reoxidation processes of iron corrosion merchandise concerned in atmospheric corrosion. Corros. Sci. 78, 293–303 (2014).

75.

Watanabe, M. et al. In situ X-ray diffraction measurement technique for investigating the oxides movies on austenitic chrome steel in simulated pressurized water reactor major water. Corrosion 71, 1224–1236 (2015).

76.

Kim, D. H. et al. Oxidation kinetics in iron and chrome steel: an in situ X-ray reflectivity research. J. Phys. Chem. B 108, 20213–20218 (2004).

77.

Medway, S. L. et al. In situ research of the oxidation of nickel electrodes in alkaline resolution. J. Electroanal. Chem. 587, 172–181 (2006).

78.

Bertram, F. et al. In situ anodization of aluminum surfaces studied by x-ray reflectivity and electrochemical impedance spectroscopy. J. Appl. Phys. 116, 1–6 (2014).

79.

Evertsson, J. et al. The thickness of native oxides on aluminum alloys and single crystals. Appl. Surf. Sci. 349, 826–832 (2015).

80.

Zhang, F. et al. Integration of electrochemical and synchrotron-based X-ray strategies for in-situ investigation of aluminum anodization. Electrochim. Acta 241, 299–308 (2017).

81.

Macdonald, D. D. On the tenuous nature of passivity and its function within the isolation of HLNW. J. Nucl. Mater. 379, 24–32 (2008).

82.

Macdonald, D. D. The historical past of the purpose defect mannequin for the passive state: a short evaluation of movie progress facets. Electrochim. Acta 56, 1761–1772 (2011).

83.

Seyeux, A., Maurice, V. & Marcus, P. Oxide movie progress kinetics on metals and alloys. J. Electrochem. Soc. 160, C189–C196 (2013).

84.

Örnek, C. et al. In-situ synchrotron GIXRD research of passive movie evolution on duplex chrome steel in corrosive setting. Corros. Sci. 141, 18–21 (2018).

85.

Aoki, S. et al. Potential dependence of preferential dissolution conduct of a duplex chrome steel in simulated resolution inside crevice. Zairyo to Kankyo/. Corros. Eng. 60, 363–367 (2011).

86.

Olsson, C.-O. A. et al. Quantifying the metallic nickel enrichment on chrome steel. Electrochem. Strong State Lett. 14, C1–C3 (2011).

87.

Fredriksson, W. et al. Full depth profile of passive movies on 316L chrome steel based mostly on excessive decision HAXPES together with ARXPS. Appl. Surf. Sci. 258, 5790–5797 (2012).

88.

Bearden, J. A. X-ray wavelengths. Rev. Mod. Phys. 39, 78–124 (1967).


Supply hyperlink
asubhan

wordpress autoblog

amazon autoblog

affiliate autoblog

wordpress web site

web site growth

Show More

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Close