Chemistry

Residues 529 to 549 take part in membrane penetration and pore-forming exercise of the Bordetella adenylate cyclase toxin


1.

Bumba, L. et al. Calcium-Pushed Folding of RTX Area beta-Rolls Ratchets Translocation of RTX Proteins via Sort I Secretion Ducts. Mol Cell 62, 47–62, https://doi.org/10.1016/j.molcel.2016.03.zero18 (2016).

2.

Hackett, M., Guo, L., Shabanowitz, J., Hunt, D. F. & Hewlett, E. L. Inside lysine palmitoylation in adenylate cyclase toxin from Bordetella pertussis. Science 266, 433–435 (1994).

Three.

Hackett, M. et al. Hemolytic, however not cell-invasive exercise, of adenylate cyclase toxin is selectively affected by differential fatty-acylation in Escherichia coli. J Biol Chem 270, 20250–20253 (1995).

four.

Linhartova, I. et al. RTX proteins: a extremely numerous household secreted by a standard mechanism. FEMS Microbiol Rev 34, 1076–1112, https://doi.org/10.1111/j.1574-6976.2010.00231.x (2010).

5.

Masin, J., Osicka, R., Bumba, L. & Sebo, P. Bordetella adenylate cyclase toxin: a novel mixture of a pore-forming moiety with a cell-invading adenylate cyclase enzyme. Pathog Dis 73, ftv075, https://doi.org/10.1093/femspd/ftv075 (2015).

6.

Masin, J. et al. Negatively charged residues of the section linking the enzyme and cytolysin moieties limit the membrane-permeabilizing capability of adenylate cyclase toxin. Sci Rep 6, 29137, https://doi.org/10.1038/srep29137 (2016).

7.

Subrini, O. et al. Characterization of a membrane-active peptide from the Bordetella pertussis CyaA toxin. J Biol Chem 288, 32585–32598, https://doi.org/10.1074/jbc.M113.508838 (2013).

Eight.

Basler, M., Masin, J., Osicka, R. & Sebo, P. Pore-forming and enzymatic actions of Bordetella pertussis adenylate cyclase toxin synergize in selling lysis of monocytes. Infect Immun 74, 2207–2214 (2006).

9.

Hewlett, E. L., Donato, G. M. & Grey, M. C. Macrophage cytotoxicity produced by adenylate cyclase toxin from Bordetella pertussis: extra than simply making cyclic AMP! Mol Microbiol 59, 447–459 (2006).

10.

Otero, A. S., Yi, X. B., Grey, M. C., Szabo, G. & Hewlett, E. L. Membrane depolarization prevents cell invasion by Bordetella pertussis adenylate cyclase toxin. J Biol Chem 270, 9695–9697 (1995).

11.

Veneziano, R. et al. Bordetella pertussis adenylate cyclase toxin translocation throughout a tethered lipid bilayer. Proc Natl Acad Sci USA 110, 20473–20478, https://doi.org/10.1073/pnas.1312975110 (2013).

12.

Gordon, V. M., Leppla, S. H. & Hewlett, E. L. Inhibitors of receptor-mediated endocytosis block the entry of Bacillus anthracis adenylate cyclase toxin however not that of Bordetella pertussis adenylate cyclase toxin. Infect Immun 56, 1066–1069 (1988).

13.

Novak, J. et al. Construction-Perform Relationships Underlying the Capability of Bordetella Adenylate Cyclase Toxin to Disarm Host Phagocytes. Toxins (Basel) 9, https://doi.org/10.3390/toxins9100300 (2017).

14.

Wolff, J., Cook dinner, G. H., Goldhammer, A. R. & Berkowitz, S. A. Calmodulin prompts prokaryotic adenylate cyclase. Proc Natl Acad Sci USA 77, 3841–3844 (1980).

15.

Benz, R. Channel formation by RTX-toxins of pathogenic micro organism: Foundation of their organic exercise. Biochim Biophys Acta 1858, 526–537, https://doi.org/10.1016/j.bbamem.2015.10.025 (2016).

16.

Benz, R., Maier, E., Ladant, D., Ullmann, A. & Sebo, P. Adenylate cyclase toxin (CyaA) of Bordetella pertussis. Proof for the formation of small ion-permeable channels and comparability with HlyA of Escherichia coli. J Biol Chem 269, 27231–27239 (1994).

17.

Ehrmann, I. E., Grey, M. C., Gordon, V. M., Grey, L. S. & Hewlett, E. L. Hemolytic exercise of adenylate cyclase toxin from Bordetella pertussis. FEBS Lett 278, 79–83 (1991).

18.

Fiser, R. et al. Calcium inflow rescues adenylate cyclase-hemolysin from speedy cell membrane elimination and permits phagocyte permeabilization by toxin pores. PLoS Pathog Eight, e1002580, https://doi.org/10.1371/journal.ppat.1002580 (2012).

19.

Grey, M., Szabo, G., Otero, A. S., Grey, L. & Hewlett, E. Distinct mechanisms for Okay+ efflux, intoxication, and hemolysis by Bordetella pertussis AC toxin. J Biol Chem 273, 18260–18267 (1998).

20.

Vojtova-Vodolanova, J. et al. Oligomerization is concerned in pore formation by Bordetella adenylate cyclase toxin. Faseb J 23, 2831–2843 (2009).

21.

Wald, T. et al. Quantification of potassium ranges in cells handled with Bordetella adenylate cyclase toxin. Anal Biochem 450, 57–62, https://doi.org/10.1016/j.ab.2013.10.039 (2014).

22.

Basler, M. et al. Segments essential for membrane translocation and pore-forming exercise of Bordetella adenylate cyclase toxin. J Biol Chem 282, 12419–12429 (2007).

23.

Grey, M. C. et al. Translocation-specific conformation of adenylate cyclase toxin from Bordetella pertussis inhibits toxin-mediated hemolysis. J Bacteriol 183, 5904–5910, https://doi.org/10.1128/JB.183.20.5904-5910.2001 (2001).

24.

Osickova, A. et al. Adenylate cyclase toxin translocates throughout goal cell membrane with out forming a pore. Mol Microbiol 75, 1550–1562, https://doi.org/10.1111/j.1365-2958.2010.07077.x (2010).

25.

Osickova, A., Osicka, R., Maier, E., Benz, R. & Sebo, P. An amphipathic alpha-helix together with glutamates 509 and 516 is essential for membrane translocation of adenylate cyclase toxin and modulates formation and cation selectivity of its membrane channels. J Biol Chem 274, 37644–37650 (1999).

26.

Guermonprez, P. et al. The adenylate cyclase toxin of Bordetella pertussis binds to focus on cells by way of the alpha(M)beta(2) integrin (CD11b/CD18). J Exp Med 193, 1035–1044 (2001).

27.

Osicka, R. et al. Bordetella adenylate cyclase toxin is a novel ligand of the integrin complement receptor Three. Elife four, e10766, https://doi.org/10.7554/eLife.10766 (2015).

28.

Hasan, S. et al. Interplay of Bordetella adenylate cyclase toxin with complement receptor Three includes multivalent glycan binding. FEBS Lett 589, 374–379, https://doi.org/10.1016/j.febslet.2014.12.zero23 (2015).

29.

Morova, J., Osicka, R., Masin, J. & Sebo, P. RTX cytotoxins acknowledge beta2 integrin receptors via N-linked oligosaccharides. Proc Natl Acad Sci U S A (2008).

30.

Bellalou, J., Sakamoto, H., Ladant, D., Geoffroy, C. & Ullmann, A. Deletions affecting hemolytic and toxin actions of Bordetella pertussis adenylate cyclase. Infect Immun 58, 3242–3247 (1990).

31.

Eby, J. C. et al. Selective translocation of the Bordetella pertussis adenylate cyclase toxin throughout the basolateral membranes of polarized epithelial cells. J Biol Chem 285, 10662–10670, https://doi.org/10.1074/jbc.M109.089219 (2010).

32.

Martin, C. et al. Membrane restructuring by Bordetella pertussis adenylate cyclase toxin, a member of the RTX toxin household. J Bacteriol 186, 3760–3765 (2004).

33.

Masin, J., Konopasek, I., Svobodova, J. & Sebo, P. Totally different structural necessities for adenylate cyclase toxin interactions with erythrocyte and liposome membranes. Biochim Biophys Acta 1660, 144–154 (2004).

34.

Hasan, S. et al. Bordetella pertussis Adenylate Cyclase Toxin Disrupts Purposeful Integrity of Bronchial Epithelial Layers. Infect Immun 86, https://doi.org/10.1128/IAI.00445-17 (2018).

35.

Guo, Q. et al. Structural foundation for the interplay of Bordetella pertussis adenylyl cyclase toxin with calmodulin. Embo J 24, 3190–3201 (2005).

36.

Cannella, S. E. et al. Stability, structural and purposeful properties of a monomeric, calcium-loaded adenylate cyclase toxin, CyaA, from Bordetella pertussis. Sci Rep 7, 42065, https://doi.org/10.1038/srep42065 (2017).

37.

Eisenberg, D., Schwarz, E., Komaromy, M. & Wall, R. Evaluation of membrane and floor protein sequences with the hydrophobic second plot. J Mol Biol 179, 125–142, 0022-2836(84)90309-7 [pii] (1984).

38.

Masin, J. et al. The conserved tyrosine residue 940 performs a key structural function in membrane interplay of Bordetella adenylate cyclase toxin. Sci Rep 7, 9330, https://doi.org/10.1038/s41598-017-09575-6 (2017).

39.

Powthongchin, B. & Angsuthanasombat, C. Results on haemolytic exercise of single proline substitutions within the Bordetella pertussis CyaA pore-forming fragment. Arch Microbiol 191, 1–9, https://doi.org/10.1007/s00203-008-0421-Three (2009).

40.

Juntapremjit, S. et al. Purposeful significance of the Gly cluster in transmembrane helix 2 of the Bordetella pertussis CyaA-hemolysin: Implications for toxin oligomerization and pore formation. Toxicon 106, 14–19, https://doi.org/10.1016/j.toxicon.2015.09.006 (2015).

41.

Knapp, O., Maier, E., Masin, J., Sebo, P. & Benz, R. Pore formation by the Bordetella adenylate cyclase toxin in lipid bilayer membranes: function of voltage and pH. Biochim Biophys Acta 1778, 260–269, https://doi.org/10.1016/j.bbamem.2007.09.026 (2008).

42.

Tokumasu, F., Ostera, G. R., Amaratunga, C. & Fairhurst, R. M. Modifications in erythrocyte membrane zeta potential by Plasmodium falciparum an infection. Exp Parasitol 131, 245–251, https://doi.org/10.1016/j.exppara.2012.03.005 (2012).

43.

Rost, B., Fariselli, P. & Casadio, R. Topology prediction for helical transmembrane proteins at 86% accuracy. Protein Sci 5, 1704–1718, https://doi.org/10.1002/professional.5560050824 (1996).

44.

Chen, C. P., Kernytsky, A. & Rost, B. Transmembrane helix predictions revisited. Protein Sci 11, 2774–2791, https://doi.org/10.1110/ps.0214502 (2002).

45.

Masin, J. et al. Variations in purinergic amplification of osmotic cell lysis by the pore-forming RTX toxins Bordetella pertussis CyaA and Actinobacillus pleuropneumoniae ApxIA: the function of pore dimension. Infect Immun 81, 4571–4582, https://doi.org/10.1128/IAI.00711-13 (2013).

46.

Szabo, G., Grey, M. C. & Hewlett, E. L. Adenylate cyclase toxin from Bordetella pertussis produces ion conductance throughout synthetic lipid bilayers in a calcium- and polarity-dependent method. J Biol Chem 269, 22496–22499 (1994).

47.

Scholfield, C. R. Composition of Soybean Lecithin. Journal of the American Oil Chemists´Society 58, 889–892 (1981).

48.

Abidi, S. L. Chromatographic evaluation of plant sterols in meals and vegetable oils. J Chromatogr A 935, 173–201 (2001).

49.

Nelson, G. J. Research on the lipids of sheep pink blood cells. I. Lipid composition in high and low potassium pink cells. Lipids 2, 64–71, https://doi.org/10.1007/BF02532003 (1967).

50.

Stangl, M. & Schneider, D. Purposeful competitors inside a membrane: Lipid recognition vs. transmembrane helix oligomerization. Biochim Biophys Acta 1848, 1886–1896, https://doi.org/10.1016/j.bbamem.2015.03.zero11 (2015).

51.

Epand, R. M. Detection of hexagonal section forming propensity in phospholipid bilayers. Biophys J 64, 290–291, https://doi.org/10.1016/S0006-3495(93)81353-5 (1993).

52.

Bumba, L., Masin, J., Fiser, R. & Sebo, P. Bordetella adenylate cyclase toxin mobilizes its beta2 integrin receptor into lipid rafts to perform translocation throughout goal cell membrane in two steps. PLoS Pathog 6, e1000901, https://doi.org/10.1371/journal.ppat.1000901 (2010).

53.

Vojtova, J., Kofronova, O., Sebo, P. & Benada, O. Bordetella adenylate cyclase toxin induces a cascade of morphological modifications of sheep erythrocytes and localizes into clusters in erythrocyte membranes. Microsc Res Tech 69, 119–129 (2006).

54.

Prangkio, P., Juntapremjit, S., Koehler, M., Hinterdorfer, P. & Angsuthanasombat, C. Contributions of the Hydrophobic Helix 2 of the Bordetella pertussis CyaA-hemolysin to Membrane Permeabilization. Protein Pept Lett 25, 236–243, https://doi.org/10.2174/0929866525666171201120456 (2018).

55.

Osicka, R. et al. Supply of CD8(+) T-cell epitopes into main histocompatibility complicated class I antigen presentation pathway by Bordetella pertussis adenylate cyclase: delineation of cell invasive constructions and permissive insertion websites. Infect Immun 68, 247–256 (2000).

56.

Ladant, D. Interplay of Bordetella pertussis adenylate cyclase with calmodulin. Identification of two separated calmodulin-binding domains. J Biol Chem 263, 2612–2618 (1988).

57.

Sigworth, F. J. & Sine, S. M. Information transformations for improved show and becoming of single-channel dwell time histograms. Biophys J 52, 1047–1054, https://doi.org/10.1016/S0006-3495(87)83298-Eight (1987).

58.

Rouser, G., Fkeischer, S. & Yamamoto, A. Two dimensional then layer chromatographic separation of polar lipids and dedication of phospholipids by phosphorus evaluation of spots. Lipids 5, 494–496 (1970).


Supply hyperlink
asubhan

wordpress autoblog

amazon autoblog

affiliate autoblog

wordpress web site

web site growth

Show More

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Close