Chemistry

Selective binding of a toxin and phosphatidylinositides to a mammalian potassium channel


1.

Suh, B. C. & Hille, B. PIP2 is a vital cofactor for ion channel operate: how and why? Annu Rev. Biophys. 37, 175–195 (2008).

2.

Hibino, H. et al. Inwardly rectifying potassium channels: their construction, operate, and physiological roles. Physiol. Rev. 90, 291–366 (2010).

three.

Pattnaik, B. R., Asuma, M. P., Spott, R. & Pillers, D. A. Genetic defects within the hotspot of inwardly rectifying Okay(+) (Kir) channels and their metabolic penalties: a assessment. Mol. Genet. Metab. 105, 64–72 (2012).

Four.

Furst, O., Mondou, B. & D’Avanzo, N. Phosphoinositide regulation of inward rectifier potassium (Kir) channels. Entrance. Physiol. Four, 404 (2014).

5.

Tristani-Firouzi, M. et al. Purposeful and scientific characterization of KCNJ2 mutations related to LQT7 (Andersen syndrome). J. Clin. Make investments. 110, 381–388 (2002).

6.

Lopes, C. M. et al. Alterations in conserved Kir channel-PIP2 interactions underlie channelopathies. Neuron 34, 933–944 (2002).

7.

Ashcroft, F. M. ATP-sensitive potassium channelopathies: deal with insulin secretion. J. Clin. Make investments. 115, 2047–2058 (2005).

eight.

McLaughlin, S. & Murray, D. Plasma membrane phosphoinositide group by protein electrostatics. Nature 438, 605–611 (2005).

9.

Huang, C. L., Feng, S. & Hilgemann, D. W. Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gbetagamma. Nature 391, 803–806 (1998).

10.

Rohacs, T. et al. Specificity of activation by phosphoinositides determines lipid regulation of Kir channels. Proc. Natl Acad. Sci. USA 100, 745–750 (2003).

11.

Fujiwara, Y. & Kubo, Y. Regulation of the desensitization and ion selectivity of ATP-gated P2X2 channels by phosphoinositides. J. Physiol. 576, 135–149 (2006).

12.

Hansen, S. B., Tao, X. & MacKinnon, R. Structural foundation of PIP2 activation of the classical inward rectifier Okay+ channel Kir2.2. Nature 477, 495–498 (2011).

13.

Fan, Z. & Makielski, J. C. Phosphoinositides lower ATP sensitivity of the cardiac ATP-sensitive Okay(+) channel. A molecular probe for the mechanism of ATP-sensitive inhibition. J. Gen. Physiol. 114, 251–269 (1999).

14.

Tillman, T. S. & Cascio, M. Results of membrane lipids on ion channel construction and performance. Cell Biochem. Biophys. 38, 161–190 (2003).

15.

Gamper, N. & Shapiro, M. S. Regulation of ion transport proteins by membrane phosphoinositides. Nat. Rev. Neurosci. eight, 921–934 (2007).

16.

Rohacs, T., Chen, J., Prestwich, G. D. & Logothetis, D. E. Distinct specificities of inwardly rectifying Okay(+) channels for phosphoinositides. J. Biol. Chem. 274, 36065–36072 (1999).

17.

Aryal, P., Dvir, H., Choe, S. & Slesinger, P. A. A discrete alcohol pocket concerned in GIRK channel activation. Nat. Neurosci. 12, 988–995 (2009).

18.

Ruppersberg, J. P. Intracellular regulation of inward rectifier Okay+ channels. Pflug. Arch. 441, 1–11 (2000).

19.

Cheng, W. W. L., D’Avanzo, N., Doyle, D. A. & Nichols, C. G. Twin-mode phospholipid regulation of human inward rectifying potassium channels. Biophys. J. 100, 620–628 (2011).

20.

Xie, L. H., John, S. A., Ribalet, B. & Weiss, J. N. Activation of inwardly rectifying potassium (Kir) channels by phosphatidylinosital-Four,5-bisphosphate (PIP2): interplay with different regulatory ligands. Prog. Biophys. Mol. Biol. 94, 320–335 (2007).

21.

Jin, W. & Lu, Z. A novel high-affinity inhibitor for inward-rectifier Okay+ channels. Biochemistry 37, 13291–13299 (1998).

22.

Kanjhan, R., Coulson, E. J., Adams, D. J. & Bellingham, M. C. Tertiapin-Q blocks recombinant and native massive conductance Okay+ channels in a use-dependent method. J. Pharmacol. Exp. Ther. 314, 1353–1361 (2005).

23.

Lee, S. J. et al. Secondary anionic phospholipid binding web site and gating mechanism in Kir2.1 inward rectifier channels. Nat. Commun. Four, 2786 (2013).

24.

Su, Z., Brown, E. C., Wang, W. & MacKinnon, R. Novel cell-free high-throughput screening methodology for pharmacological instruments concentrating on Okay+ channels. Proc. Natl Acad. Sci. USA 113, 5748–5753 (2016).

25.

Whorton, M. R. & MacKinnon, R. Crystal construction of the mammalian GIRK2 Okay+ channel and gating regulation by G proteins, PIP2, and sodium. Cell 147, 199–208 (2011).

26.

Whorton, M. R. & MacKinnon, R. X-ray construction of the mammalian GIRK2-betagamma G-protein advanced. Nature 498, 190–197 (2013).

27.

D’Avanzo, N., Cheng, W. W., Doyle, D. A. & Nichols, C. G. Direct and particular activation of human inward rectifier Okay+ channels by membrane phosphatidylinositol Four,5-bisphosphate. J. Biol. Chem. 285, 37129–37132 (2010).

28.

D’Avanzo, N., Lee, S. J., Cheng, W. W. & Nichols, C. G. Energetics and placement of phosphoinositide binding in human Kir2.1 channels. J. Biol. Chem. 288, 16726–16737 (2013).

29.

Traynor-Kaplan, A. et al. Fatty-acyl chain profiles of mobile phosphoinositides. Biochim. Biophys. Acta 1862, 513–522 (2017).

30.

Lee, S. J. et al. Structural foundation of management of inward rectifier Kir2 channel gating by bulk anionic phospholipids. J. Gen. Physiol. 148, 227–237 (2016).

31.

Marcoux, J. et al. Mass spectrometry reveals synergistic results of nucleotides, lipids, and medicines binding to a multidrug resistance efflux pump. Proc. Natl Acad. Sci. USA 110, 9704–9709 (2013).

32.

Laganowsky, A. et al. Membrane proteins bind lipids selectively to modulate their construction and performance. Nature 510, 172–175 (2014).

33.

Cong, X. et al. Figuring out membrane protein–-lipid binding thermodynamics utilizing native mass spectrometry. J. Am. Chem. Soc. 138, 4346–4349 (2016).

34.

Hyung, S. J., Robinson, C. V. & Ruotolo, B. T. Gasoline-phase unfolding and disassembly reveals stability variations in ligand-bound multiprotein complexes. Chem. Biol. 16, 382–390 (2009).

35.

Hilton, G. R. & Benesch, J. L. 20 years of learning non-covalent biomolecular assemblies by the use of electrospray ionization mass spectrometry. J. R. Soc. Interface 9, 801–816 (2012).

36.

Dyachenko, A., Gruber, R., Shimon, L., Horovitz, A. & Sharon, M. Allosteric mechanisms could be distinguished utilizing structural mass spectrometry. Proc. Natl Acad. Sci. USA 110, 7235–7239 (2013).

37.

Cubrilovic, D. et al. Willpower of protein-ligand binding constants of a cooperatively regulated tetrameric enzyme utilizing electrospray mass spectrometry. ACSs Chem. Biol. 9, 218–226 (2014).

38.

Liu, Y., Cong, X., Liu, W. & Laganowsky, A. Characterization of membrane protein-lipid interactions by mass spectrometry ion mobility mass spectrometry. J. Am. Soc. Mass Spectrom. 28, 579–586 (2017).

39.

Cong, X., Liu, Y., Liu, W., Liang, X. & Laganowsky, A. Allosteric modulation of protein-protein interactions by particular person lipid binding occasions. Nat. Commun. eight, 2203 (2017).

40.

Daneshfar, R., Kitova, E. N. & Klassen, J. S. Willpower of protein–ligand affiliation thermochemistry utilizing variable-temperature nanoelectrospray mass spectrometry. J. Am. Chem. Soc. 126, 4786–4787 (2004).

41.

Gupta, Okay. et al. The position of interfacial lipids in stabilizing membrane protein oligomers. Nature 541, 421–424 (2017).

42.

Patrick, J. W. et al. Allostery revealed inside lipid binding occasions to membrane proteins. Proc. Natl Acad. Sci. USA 115, 2976–2981 (2018).

43.

Bolla, J. R. et al. Direct commentary of the affect of cardiolipin and antibiotics on lipid II binding to MurJ. Nat. Chem. 10, 363–371 (2018).

44.

Laganowsky, A., Studying, E., Hopper, J. T. & Robinson, C. V. Mass spectrometry of intact membrane protein complexes. Nat. Protoc. eight, 639–651 (2013).

45.

Yen, H. Y. et al. Ligand binding to a G protein-coupled receptor captured in a mass spectrometer. Sci. Adv. three, e1701016 (2017).

46.

Studying, E. et al. The position of the detergent micelle in preserving the construction of membrane proteins within the gasoline part. Angew. Chem. Int. Ed. Engl. 54, 4577–4581 (2015).

47.

Mehmood, S. et al. Cost discount stabilizes intact membrane protein complexes for mass spectrometry. J. Am. Chem. Soc. 136, 17010–17012 (2014).

48.

Gault, J. et al. Excessive-resolution mass spectrometry of small molecules certain to membrane proteins. Nat. Strategies 13, 333–336 (2016).

49.

Poltash, M. L., McCabe, J. W., Patrick, J. W., Laganowsky, A. & Russell, D. H. Improvement and analysis of a reverse-entry ion supply orbitrap mass spectrometer. J. Am. Soc. Mass. Spectrom. https://doi.org/10.1007/s13361-018-1976-Zero (2018).

50.

Poltash, M. L. et al. Fourier transform-ion mobility-orbitrap mass spectrometer: a next-generation instrument for native mass spectrometry. Anal. Chem. https://doi.org/10.1021/acs.analchem.8b02463 (2018).

51.

Lippens, J. L. et al. Speedy LC–MS strategies for correct molecular weight dedication of membrane and hydrophobic proteins. Anal. Chem. 90, 13616–13623 (2018).

52.

Sherman, F., Stewart, J. W., Tsunasawa, S. & Tsunasawa, S. Methionine or not methionine at the start of a protein. Bioessays three, 27–31 https://doi.org/10.1002/bies.950030108 (1985).

53.

Wingfield, P. T. N-terminal methionine processing. Curr. Protoc. Protein Sci. 88, 6.14.1–6.14.three (2017).

54.

Jin, W. & Lu, Z. Synthesis of a secure type of tertiapin: a high-affinity inhibitor for inward-rectifier Okay+ channels. Biochemistry 38, 14286–14293 (1999).

55.

Allison, T. M. et al. Quantifying the stabilizing results of protein–ligand interactions within the gasoline part. Nat. Commun. 6, 8551 (2015).

56.

Chen, I. S., Tateyama, M., Fukata, Y., Uesugi, M. & Kubo, Y. Ivermectin prompts GIRK channels in a PIP2-dependent, Gbetagamma-independent method and an amino acid residue on the slide helix governs the activation. J. Physiol. 595, 5895–5912 (2017).

57.

Marty, M. T. et al. Bayesian deconvolution of mass and ion mobility spectra: from binary interactions to polydisperse ensembles. Anal. Chem. 87, 4370–4376 (2015).

58.

Copeland, R. A., Pompliano, D. L. & Meek, T. D. Drug-target residence time and its implications for lead optimization. Nat. Rev. Drug. Discov. 5, 730–739 (2006).

59.

Yin, H. & Flynn, A. D. Drugging membrane protein interactions. Annu. Rev. Biomed. Eng. 18, 51–76 (2016).

60.

Adney, S. Okay., Ha, J., Meng, X. Y., Kawano, T. & Logothetis, D. E. A important gating change at a modulatory web site in neuronal Kir3 channels. J. Neurosci. 35, 14397–14405 (2015).

61.

Mao, J. et al. Molecular foundation for the inhibition of G protein-coupled inward rectifier Okay(+) channels by protein kinase C. Proc. Natl Acad. Sci. USA 101, 1087–1092 (2004).

62.

Chung, H. J., Qian, X., Ehlers, M., Jan, Y. N. & Jan, L. Y. Neuronal exercise regulates phosphorylation-dependent floor supply of G protein-activated inwardly rectifying potassium channels. Proc. Natl Acad. Sci. USA 106, 629–634 (2009).

63.

Harayama, T. & Riezman, H. Understanding the range of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 19, 281–296 (2018).

64.

Monod, J., Wyman, J. & Changeux, J. P. On the character of allosteric transitions: a believable mannequin. J. Mol. Biol. 12, 88–118 (1965).

65.

Motlagh, H. N., Wrabl, J. O., Li, J. & Hilser, V. J. The ensemble nature of allostery. Nature 508, 331–339 (2014).

66.

Liu, J. & Nussinov, R. Allostery: an summary of its historical past, ideas, strategies, and purposes. PLoS Comput. Biol. 12, e1004966 (2016).

67.

Zhang, H., He, C., Yan, X., Mirshahi, T. & Logothetis, D. E. Activation of inwardly rectifying Okay+ channels by distinct PtdIns(Four,5)P2 interactions. Nat. Cell Biol. 1, 183–188 (1999).

68.

Yen, H. Y. et al. PtdIns(Four,5)P2 stabilizes energetic states of GPCRs and enhances selectivity of G-protein coupling. Nature 559, 423–427 (2018).


Supply hyperlink
asubhan

wordpress autoblog

amazon autoblog

affiliate autoblog

wordpress web site

web site growth

Show More

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Close