Chemistry

Serotonin transporter–ibogaine complexes illuminate mechanisms of inhibition and transport


1.

Singh, S. Okay. & Pal, A. Biophysical approaches to the examine of LeuT, a prokaryotic homolog of neurotransmitter sodium symporters. Strategies Enzymol. 557, 167–198 (2015).

2.

Kristensen, A. S. et al. SLC6 neurotransmitter transporters: construction, operate, and regulation. Pharmacol. Rev. 63, 585–640 (2011).

three.

Gether, U., Andersen, P. H., Larsson, O. M. & Schousboe, A. Neurotransmitter transporters: molecular operate of vital drug targets. Traits Pharmacol. Sci. 27, 375–383 (2006).

four.

Cipriani, A. et al. Comparative efficacy and acceptability of 21 antidepressant medicine for the acute therapy of adults with main depressive dysfunction: a scientific assessment and community meta-analysis. Lancet 391, 1357–1366 (2018).

5.

Lin, Z. & Madras, B. Okay. in Neurotransmitter Transporters. Handbook of Experimental Pharmacology Vol. 175 (eds Sitte, H. H. & Freissmuth, M.) 327–371 (Springer, Berlin, Heidelberg, 2006).

6.

Kazmier, Okay. et al. Conformational dynamics of ligand-dependent alternating entry in LeuT. Nat. Struct. Mol. Biol. 21, 472–479 (2014).

7.

Malinauskaite, L. et al. A mechanism for intracellular launch of Na+ by neurotransmitter/sodium symporters. Nat. Struct. Mol. Biol. 21, 1006–1012 (2014).

eight.

Krishnamurthy, H. & Gouaux, E. X-ray buildings of LeuT in substrate-free outward-open and apo inward-open states. Nature 481, 469–474 (2012).

9.

Merkle, P. S. et al. Substrate-modulated unwinding of transmembrane helices within the NSS transporter LeuT. Sci. Adv. four, eaar6179 (2018).

10.

Grouleff, J., Søndergaard, S., Koldsø, H. & Schiøtt, B. Properties of an inward-facing state of LeuT: conformational stability and substrate launch. Biophys. J. 108, 1390–1399 (2015).

11.

Yamashita, A., Singh, S. Okay., Kawate, T., Jin, Y. & Gouaux, E. Crystal construction of a bacterial homologue of Na+/Cl−-dependent neurotransmitter transporters. Nature 437, 215–223 (2005).

12.

Terry, D. S. et al. -open inward-facing intermediate conformation of LeuT is related to Na+ launch and substrate transport. Nat. Commun. 9, 230 (2018).

13.

Belgers, M. et al. Ibogaine and habit within the animal mannequin, a scientific assessment and meta-analysis. Transl. Psychiatry 6, e826 (2016).

14.

Dybowski, J. & Landrin, E. Regarding Iboga, its excitement-producing properties, its composition, and the brand new alkaloid it incorporates, ibogaine. C.R. Acad. Sci. 133, 748 (1901).

15.

Bulling, S. et al. The mechanistic foundation for noncompetitive ibogaine inhibition of serotonin and dopamine transporters. J. Biol. Chem. 287, 18524–18534 (2012).

16.

Jacobs, M. T., Zhang, Y. W., Campbell, S. D. & Rudnick, G. Ibogaine, a noncompetitive inhibitor of serotonin transport, acts by stabilizing the cytoplasm-facing state of the transporter. J. Biol. Chem. 282, 29441–29447 (2007).

17.

Wu, S. et al. Fabs allow single particle cryoEM research of small proteins. Construction 20, 582–592 (2012).

18.

Coleman, J. A. & Gouaux, E. Structural foundation for recognition of numerous antidepressants by the human serotonin transporter. Nat. Struct. Mol. Biol. 25, 170–175 (2018).

19.

Zhang, Y. W. & Rudnick, G. The cytoplasmic substrate permeation pathway of serotonin transporter. J. Biol. Chem. 281, 36213–36220 (2006).

20.

Burtscher, V., Hotka, M., Li, Y., Freissmuth, M. & Sandtner, W. A label-free method to detect ligand binding to cell floor proteins in actual time. eLife 7, e34944 (2018).

21.

Tavoulari, S., Forrest, L. R. & Rudnick, G. Fluoxetine (Prozac) binding to serotonin transporter is modulated by chloride and conformational adjustments. J. Neurosci. 29, 9635–9643 (2009).

22.

Ramamoorthy, S., Samuvel, D. J., Buck, E. R., Rudnick, G. & Jayanthi, L. D. Phosphorylation of threonine residue 276 is required for acute regulation of serotonin transporter by cyclic GMP. J. Biol. Chem. 282, 11639–11647 (2007).

23.

Zhang, Y. W., Turk, B. E. & Rudnick, G. Management of serotonin transporter phosphorylation by conformational state. Proc. Natl Acad. Sci. USA 113, E2776–E2783 (2016).

24.

Penmatsa, A., Wang, Okay. H. & Gouaux, E. X-ray construction of dopamine transporter elucidates antidepressant mechanism. Nature 503, 85–90 (2013).

25.

Wang, Okay. H., Penmatsa, A. & Gouaux, E. Neurotransmitter and psychostimulant recognition by the dopamine transporter. Nature 521, 322–327 (2015).

26.

Laursen, L. et al. Ldl cholesterol binding to a conserved website modulates the conformation, pharmacology, and transport kinetics of the human serotonin transporter. J. Biol. Chem. 293, 3510–3523 (2018).

27.

Mash, D. C., Staley, J. Okay., Baumann, M. H., Rothman, R. B. & Hearn, W. L. Identification of a major metabolite of ibogaine that targets serotonin transporters and elevates serotonin. Life Sci. 57, PL45–PL50 (1995).

28.

Coleman, J. A., Inexperienced, E. M. & Gouaux, E. X-ray buildings and mechanism of the human serotonin transporter. Nature 532, 334–339 (2016).

29.

Chen, F. et al. Characterization of an allosteric citalopram-binding website on the serotonin transporter. J. Neurochem. 92, 21–28 (2005).

30.

Navratna, V., Tosh, D. Okay., Jacobson, Okay. A. & Gouaux, E. Thermostabilization and purification of the human dopamine transporter (hDAT) in an inhibitor and allosteric ligand certain conformation. PLoS ONE 13, e0200085 (2018).

31.

Hasenhuetl, P. S., Freissmuth, M. & Sandtner, W. Electrogenic binding of intracellular cations defines a kinetic choice level within the transport cycle of the human serotonin transporter. J. Biol. Chem. 291, 25864–25876 (2016).

32.

Felts, B. et al. The 2 Na+ websites within the human serotonin transporter play distinct roles within the ion coupling and electrogenicity of transport. J. Biol. Chem. 289, 1825–1840 (2014).

33.

Blat, Y. Non-competitive inhibition by energetic website binders. Chem. Biol. Drug Des. 75, 535–540 (2010).

34.

Coleman, J. A., Inexperienced, E. M. & Gouaux, E. Thermostabilization, expression, purification, and crystallization of the human serotonin transporter certain to S-citalopram. J. Vis. Exp. 117, e54792 (2016).

35.

Inexperienced, E. M., Coleman, J. A. & Gouaux, E. Thermostabilization of the human serotonin transporter in an antidepressant-bound conformation. PLoS ONE 10, e0145688 (2015).

36.

Goehring, A. et al. Screening and large-scale expression of membrane proteins in mammalian cells for structural research. Nat. Protoc. 9, 2574–2585 (2014).

37.

Mastronarde, D. N. Automated electron microscope tomography utilizing sturdy prediction of specimen actions. J. Struct. Biol. 152, 36–51 (2005).

38.

Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced movement for improved cryo-electron microscopy. Nat. Strategies 14, 331–332 (2017).

39.

Zhang, Okay. Gctf: Actual-time CTF willpower and correction. J. Struct. Biol. 193, 1–12 (2016).

40.

Voss, N. R., Yoshioka, C. Okay., Radermacher, M., Potter, C. S. & Carragher, B. DoG Picker and TiltPicker: software program instruments to facilitate particle choice in single particle electron microscopy. J. Struct. Biol. 166, 205–213 (2009).

41.

Scheres, S. H. RELION: implementation of a Bayesian method to cryo-EM construction willpower. J. Struct. Biol. 180, 519–530 (2012).

42.

Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for fast unsupervised cryo-EM construction willpower. Nat. Strategies 14, 290–296 (2017).

43.

Grant, T., Rohou, A. & Grigorieff, N. cisTEM, user-friendly software program for single-particle picture processing. eLife 7, e35383 (2018).

44.

Zhang, C. et al. Evaluation of discrete native variability and structural covariance in macromolecular assemblies utilizing Cryo-EM and centered classification. Ultramicroscopy https://doi.org/10.1016/j.ultramic.2018.11.zero16 (2018).

45.

Rosenthal, P. B. & Henderson, R. Optimum willpower of particle orientation, absolute hand, and distinction loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).

46.

Adams, P. D. et al. PHENIX: a complete Python-based system for macromolecular construction resolution. Acta Crystallogr. D 66, 213–221 (2010).

47.

Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory analysis and evaluation. J. Comput. Chem. 25, 1605–1612 (2004).

48.

Wang, R. Y. et al. Automated construction refinement of macromolecular assemblies from cryo-EM maps utilizing Rosetta. eLife 5, e17219 (2016).

49.

Emsley, P. & Cowtan, Okay. Coot: model-building instruments for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

50.

Chen, V. B. et al. MolProbity: all-atom construction validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).

51.

The PyMOL Molecular Graphics System v.2.zero (Schrödinger, 2017).

52.

Chovancova, E. et al. CAVER three.zero: a software for the evaluation of transport pathways in dynamic protein buildings. PLOS Comput. Biol. eight, e1002708 (2012).

53.

Afonine, P. V. et al. New instruments for the evaluation and validation of cryo-EM maps and atomic fashions. Acta Crystallogr. D 74, 814–840 (2018).

54.

Humphrey, W., Dalke, A. & Schulten, Okay. VMD: visible molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

55.

Schreiner, E., Trabuco, L. G., Freddolino, P. L. & Schulten, Okay. Stereochemical errors and their implications for molecular dynamics simulations. BMC Bioinformatics 12, 190 (2011).

56.

Olsson, M. H., Søndergaard, C. R., Rostkowski, M. & Jensen, J. H. PROPKA3: constant therapy of inner and floor residues in empirical pK
a predictions. J. Chem. Concept Comput. 7, 525–537 (2011).

57.

Lomize, M. A., Pogozheva, I. D., Joo, H., Mosberg, H. I. & Lomize, A. L. OPM database and PPM internet server: assets for positioning of proteins in membranes. Nucleic Acids Res. 40, D370–D376 (2012).

58.

Vanommeslaeghe, Okay. et al. CHARMM common pressure area: A pressure area for drug-like molecules suitable with the CHARMM all-atom additive organic pressure fields. J. Comput. Chem. 31, 671–690 (2010).

59.

Vanommeslaeghe, Okay., Raman, E. P. & MacKerell, A. D., Jr. Automation of the CHARMM Common Pressure Discipline (CGenFF) II: project of bonded parameters and partial atomic expenses. J. Chem. Inf. Mannequin. 52, 3155–3168 (2012).

60.

Mayne, C. G., Saam, J., Schulten, Okay., Tajkhorshid, E. & Gumbart, J. C. Fast parameterization of small molecules utilizing the pressure area toolkit. J. Comput. Chem. 34, 2757–2770 (2013).

61.

Vanommeslaeghe, Okay. & MacKerell, A. D., Jr. Automation of the CHARMM Common Pressure Discipline (CGenFF) I: bond notion and atom typing. J. Chem. Inf. Mannequin. 52, 3144–3154 (2012).

62.

Gaussian 09 v.A.02 (Gaussian, 2016).

63.

Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005).

64.

Beauchamp, Okay. A. et al. MSMBuilder2: modeling conformational dynamics on the picosecond to millisecond scale. J. Chem. Concept Comput. 7, 3412–3419 (2011).

65.

Gumbart, J., Trabuco, L. G., Schreiner, E., Villa, E. & Schulten, Okay. Regulation of the protein-conducting channel by a certain ribosome. Construction 17, 1453–1464 (2009).

66.

Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: a web-based graphical consumer interface for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008).

67.

Huang, J. et al. CHARMM36m: an improved pressure area for folded and intrinsically disordered proteins. Nat. Strategies 14, 71–73 (2017).

68.

Klauda, J. B. et al. Replace of the CHARMM all-atom additive pressure area for lipids: validation on six lipid sorts. J. Phys. Chem. B 114, 7830–7843 (2010).

69.

Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparability of easy potential capabilities for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

70.

Feller, S. E., Zhang, Y., Pastor, R. W. & Brooks, B. R. Fixed stress molecular dynamics simulation: the Langevin piston methodology. J. Chem. Phys. 103, 4613–4621 (1995).

71.

Martyna, G. J., Tobias, D. J. & Klein, M. L. Fixed stress molecular dynamics algorithms. J. Chem. Phys. 101, 4177–4189 (1994).

72.

Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an N·log(N) methodology for Ewald sums in giant techniques. J. Chem. Phys. 98, 10089–10092 (1993).

73.

Ryckaert, J.-P., Ciccotti, G. & Berendsen, H. J. C. Numerical integration of the cartesian equations of movement of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23, 327–341 (1977).

74.

Gowers, R. et al. MDAnalysis: a python package deal for the fast evaluation of molecular dynamics simulations (eds Benthall, S. and Rostrup, S.) Proc. 15th Python Science Conf. 98–105 (2016).

75.

Michaud-Agrawal, N., Denning, E. J., Woolf, T. B. & Beckstein, O. MDAnalysis: a toolkit for the evaluation of molecular dynamics simulations. J. Comput. Chem. 32, 2319–2327 (2011).

76.

Trabuco, L. G., Villa, E., Mitra, Okay., Frank, J. & Schulten, Okay. Versatile becoming of atomic buildings into electron microscopy maps utilizing molecular dynamics. Construction 16, 673–683 (2008).

77.

Bayburt, T. H. & Sligar, S. G. Membrane protein meeting into Nanodiscs. FEBS Lett. 584, 1721–1727 (2010).

78.

Cheng, Y.-C. & Prusoff, W. H. Relationship between the inhibition fixed (Okay
I) and the focus of inhibitor which causes 50 per cent inhibition (I
50) of an enzymatic response. Biochem. Pharmacol. 22, 3099–3108 (1973).

79.

Singh, S. Okay., Piscitelli, C. L., Yamashita, A. & Gouaux, E. A aggressive inhibitor traps LeuT in an open-to-out conformation. Science 322, 1655–1661 (2008).


Supply hyperlink
asubhan

wordpress autoblog

amazon autoblog

affiliate autoblog

wordpress web site

web site growth

Show More

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Close