Soil mobility of artificial and virus-based mannequin nanopesticides


Aktar, M. W., Sengupta, D. & Chowdhury, A. Impression of pesticides use in agriculture: their advantages and hazards. Interdisc. Toxicol. 2, 1–12 (2009).


Lamberth, C., Jeanmart, S., Luksch, T. & Plant, A. Present challenges and traits within the discovery of agrochemicals. Science 341, 742–746 (2013).


Atwood, D. & Paisley-Jones, C. Pesticide Business Gross sales and Utilization: 2008–2012 Market Estimates (US Environmental Safety Company, 2017).


Damalas, C. A. & Eleftherohorinos, I. G. Pesticide publicity, questions of safety, and threat evaluation indicators. Int. J. Environ. Res. Pub. He. eight, 1402–1419 (2011).


Nuruzzaman, M., Rahman, M. M., Liu, Y. & Naidu, R. Nanoencapsulation, nano-guard for pesticides: a brand new window for protected software. J. Agr. Meals Chem. 64, 1447–1483 (2016).


Vurro, M., Miguel-Rojas, C. & Pérez-de-Luque, A. Protected nanotechnologies for growing the effectiveness of environmentally pleasant pure agrochemicals. Pest. Manag. Sci. (2019).


Kah, M., Kookana, R. S., Gogos, A. & Bucheli, T. D. A vital analysis of nanopesticides and nanofertilizers in opposition to their typical analogues. Nat. Nanotechnol. 13, 677–684 (2018).


Kookana, R. S. et al. Nanopesticides: guiding rules for regulatory analysis of environmental dangers. J. Agr. Meals Chem. 62, 4227–4240 (2014).


Walker, G. W. et al. Ecological threat evaluation of nano-enabled pesticides: perspective on downside formulation. J. Agr. Meals Chem. 66, 6480–6486 (2018).


Chariou, P. L. & Steinmetz, N. F. Supply of pesticides to plant parasitic nematodes utilizing tobacco delicate inexperienced mosaic virus as a nanocarrier. ACS Nano 11, 4719–4730 (2017).


Cao, J. et al. Improvement of abamectin loaded plant virus nanoparticles for efficacious plant parasitic nematode management. ACS Appl. Mater. Interfaces 7, 9546–9553 (2015).


Guenther, R. H., Lommel, S. A., Opperman, C. H. & Sit, T. L. in Virus-Derived Nanoparticles for Superior Applied sciences: Strategies and Protocols (eds Wege, C. & Lomonossoff, G. P.) 203–214 (Springer, 2018).


Charudattan, R., Pettersen, M. & Hiebert, E. Use of tobacco delicate inexperienced mosaic virus (TMGMV) mediated deadly hypersensitive response (HR) as a novel technique of weed management. US patent 6689718 (2009).


Charudattan, R. & Hiebert, E. A plant virus as a bioherbicide for tropical soda apple, Solanum viarum. Outlook Pest Manag. 18, 167–171 (2007).


Umekawa, M. & Oshima, N. Sensitivity of tobacco mosaic virus to ultraviolet irradiation. Jpn J. Microbiol. 16, 441–443 (1972).


Rae, C. et al. Chemical addressability of ultraviolet-inactivated viral nanoparticles (VNPs). PLoS ONE three, e3315 (2008).


Mir, M., Ahmed, N. & ur Rehman, A. Current functions of PLGA primarily based nanostructures in drug supply. Colloids Surf. B 159, 217–231 (2017).


Torney, F., Trewyn, B. G., Lin, V. S.-Y. & Wang, Ok. Mesoporous silica nanoparticles ship DNA and chemical substances into vegetation. Nat. Nanotechnol. 2, 295–300 (2007).


Hassan, M. E. M., Zawam, H. S., El-Nahas, S. E. M. & Desoukey, A. F. Comparability examine between silver nanoparticles and two nematicides in opposition to Meloidogyne incognita on tomato seedlings. Plant Pathol. J. 15, 144–151 (2016).


Pestovsky, Y. S. & Martínez-Antonio, A. Using nanoparticles and nanoformulations in agriculture. J. Nanosci. Nanotechnol. 17, 8699–8730 (2017).


Truong, N. P., Whittaker, M. R., Mak, C. W. & Davis, T. P. The significance of nanoparticle form in most cancers drug supply. Skilled Opin. Drug Deliv. 12, 129–142 (2015).


Barua, S. & Mitragotri, S. Challenges related to penetration of nanoparticles throughout cell and tissue boundaries: a evaluation of present standing and future prospects. Nano Right this moment 9, 223–243 (2014).


Toy, R. The Impact of Particle Dimension and Form on the in vivo Journey of Nanoparticles. PhD thesis, Case Western Reserve College (2014).


OECD Pointers Take a look at for the Testing of Chemical compounds No. 312: Leaching in Soil Columns (OECD, 2004).


Chen, Z., Li, N., Chen, L., Lee, J. & Gassensmith, J. J. Twin functionalized bacteriophage Qβ as a photocaged drug provider. Small 12, 4563–4571 (2016).


Quentin, M., Abad, P. & Favery, B. Plant parasitic nematode effectors goal host protection and nuclear capabilities to ascertain feeding cells. Entrance. Plant Sci. four, 53 (2013).


Godfrey, G. H. The depth distribution of the root-knot nematode, Heterodera radicicola, in Florida soils. J. Agri. Res. 24, 93–98 (1924).


Putter, I. et al. Avermectins: novel pesticides, acaricides and nematicides from a soil microorganism. Experientia 37, 963–964 (1981).


Schoenmakers, R. G., van de Wetering, P., Elbert, D. L. & Hubbell, J. A. The impact of the linker on the hydrolysis charge of drug-linked ester bonds. J. Management Launch 95, 291–300 (2004).


Steinmetz, N. F. & Manchester, M. Viral Nanoparticles: Instruments for Supplies Science and Drugs (Pan Stanford, 2015).


Masarapu, H. et al. Physalis mottle virus-like particles as nanocarriers for imaging reagents and medicines. Biomacromolecules 18, 4141–4153 (2017).


Ultman, J. S., Baskaran, H. & Saidel, G. M. Biomedical Mass Transport and Chemical Response: Physicochemical Rules and Mathematical Modeling (Wiley, 2016).

Supply hyperlink

wordpress autoblog

amazon autoblog

affiliate autoblog

wordpress web site

web site growth

Show More

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *