Chemistry

Structural foundation for neutralization of Plasmodium vivax by naturally acquired human antibodies that focus on DBP


1.

Guerra, C. A. et al. The worldwide limits and inhabitants liable to Plasmodium vivax transmission in 2009. PLoS Negl. Trop. Dis. four, e774 (2010).

2.

King, C. L. et al. Naturally acquired Duffy-binding protein-specific binding inhibitory antibodies confer safety from blood-stage Plasmodium vivax an infection. Proc. Natl Acad. Sci. USA 105, 8363–8368 (2008).

three.

Chootong, P. et al. Mapping epitopes of the Plasmodium vivax Duffy binding protein with naturally acquired inhibitory antibodies. Infect. Immun. 78, 1089–1095 (2010).

four.

Cole-Tobian, J. L. et al. Age-acquired immunity to a Plasmodium vivax invasion ligand, the Duffy binding protein. J. Infect. Dis. 186, 531–539 (2002).

5.

Grimberg, B. T. et al. Plasmodium vivax invasion of human erythrocytes inhibited by antibodies directed in opposition to the Duffy binding protein. PLoS Med. four, e337 (2007).

6.

Michon, P., Fraser, T. & Adams, J. H. Naturally acquired and vaccine-elicited antibodies block erythrocyte cytoadherence of the Plasmodium vivax Duffy binding protein. Infect. Immun. 68, 3164–3171 (2000).

7.

McGregor, I. A. The passive switch of human malarial immunity. Am. J. Trop. Med. Hyg. 13(suppl.), 237–239 (1964).

eight.

Miller, L. H., Mason, S. J., Dvorak, J. A., McGinniss, M. H. & Rothman, I. Okay. Erythrocyte receptors for (Plasmodium knowlesi) malaria: Duffy blood group determinants. Science 189, 561–563 (1975).

9.

Miller, L. H., Mason, S. J., Clyde, D. F. & McGinniss, M. H. The resistance issue to Plasmodium vivax in blacks. The Duffy-blood-group genotype, FyFy. N. Engl. J. Med. 295, 302–304 (1976).

10.

Wertheimer, S. P. & Barnwell, J. W. Plasmodium vivax interplay with the human Duffy blood group glycoprotein: identification of a parasite receptor-like protein. Exp. Parasitol. 69, 340–350 (1989).

11.

Adams, J. H. et al. The Duffy receptor household of Plasmodium knowlesi is situated throughout the micronemes of invasive malaria merozoites. Cell 63, 141–153 (1990).

12.

Adams, J. H. et al. A household of erythrocyte binding proteins of malaria parasites. Proc. Natl Acad. Sci. USA 89, 7085–7089 (1992).

13.

Chitnis, C. E. & Miller, L. H. Identification of the erythrocyte binding domains of Plasmodium vivax and Plasmodium knowlesi proteins concerned in erythrocyte invasion. J. Exp. Med. 180, 497–506 (1994).

14.

Chitnis, C. E., Chaudhuri, A., Horuk, R., Pogo, A. O. & Miller, L. H. The area on the Duffy blood group antigen for binding Plasmodium vivax and P. knowlesi malarial parasites to erythrocytes. J. Exp. Med. 184, 1531–1536 (1996).

15.

Ranjan, A. & Chitnis, C. E. Mapping areas containing binding residues inside useful domains of Plasmodium vivax and Plasmodium knowlesi erythrocyte-binding proteins. Proc. Natl Acad. Sci. USA 96, 14067–14072 (1999).

16.

VanBuskirk, Okay. M., Sevova, E. & Adams, J. H. Conserved residues within the Plasmodium vivax Duffy-binding protein ligand area are essential for erythrocyte receptor recognition. Proc. Natl Acad. Sci. USA 101, 15754–15759 (2004).

17.

Batchelor, J. D., Zahm, J. A. & Tolia, N. H. Dimerization of Plasmodium vivax DBP is induced upon receptor binding and drives recognition of DARC. Nat. Struct. Mol. Biol. 18, 908–914 (2011).

18.

Batchelor, J. D. et al. Purple blood cell invasion by Plasmodium vivax: structural foundation for DBP engagement of DARC. PLoS Pathogens 10, e1003869 (2014).

19.

Chen, E. et al. Broadly neutralizing epitopes within the Plasmodium vivax vaccine candidate Duffy Binding Protein. Proc. Natl Acad. Sci. USA 113, 6277–6282 (2016).

20.

Payne, R. O. et al. Human vaccination in opposition to Plasmodium vivax Duffy-binding protein induces strain-transcending antibodies. JCI Perception 2, e93683 (2017).

21.

Singh, Okay. et al. Malaria vaccine candidate primarily based on Duffy-binding protein elicits pressure transcending useful antibodies in a Part I trial. NPJ Vaccin. three, 48 (2018).

22.

Cole-Tobian, J. L. et al. Pressure-specific Duffy binding protein antibodies correlate with safety in opposition to an infection with homologous in comparison with heterologous Plasmodium vivax strains in Papua New Guinean kids. Infect. Immun. 77, 4009–4017 (2009).

23.

Tsuboi, T. et al. Pure variation throughout the principal adhesion area of the Plasmodium vivax Duffy binding protein. Infect. Immun. 62, 5581–5586 (1994).

24.

Ntumngia, F. B. & Adams, J. H. Design and immunogenicity of a novel artificial antigen primarily based on the ligand area of the Plasmodium vivax Duffy binding protein. Clin. Vaccin. Immunol. 19, 30–36 (2012).

25.

Chen, E., Salinas, N. D., Ntumngia, F. B., Adams, J. H. & Tolia, N. H. Structural evaluation of the artificial Duffy Binding Protein (DBP) antigen DEKnull related for Plasmodium vivax malaria vaccine design. PLoS Negl. Trop. Dis. 9, e0003644 (2015).

26.

Schmidt, A. G. et al. Viral receptor-binding website antibodies with various germline origins. Cell 161, 1026–1034 (2015).

27.

Ekiert, D. C. et al. Antibody recognition of a extremely conserved influenza virus epitope. Science 324, 246–251 (2009).

28.

Ceravolo, I. P. et al. Naturally acquired inhibitory antibodies to Plasmodium vivax Duffy binding protein are short-lived and allele-specific following a single malaria an infection. Clin. Exp. Immunol. 156, 502–510 (2009).

29.

VanBuskirk, Okay. M. et al. Antigenic drift within the ligand area of Plasmodium vivax Duffy binding protein confers resistance to inhibitory antibodies. J. Infect. Dis. 190, 1556–1562 (2004).

30.

Verkoczy, L., Kelsoe, G., Moody, M. A. & Haynes, B. F. Function of immune mechanisms in induction of HIV-1 broadly neutralizing antibodies. Curr. Opin. Immunol. 23, 383–390 (2011).

31.

Orlandi, P. A., Sim, B. Okay., Chulay, J. D. & Haynes, J. D. Characterization of the 175-kilodalton erythrocyte binding antigen of Plasmodium falciparum. Mol. Biochem. Parasitol. 40, 285–294 (1990).

32.

Klotz, F. W. et al. Binding of Plasmodium falciparum 175-kilodalton erythrocyte binding antigen and invasion of murine erythrocytes requires N-acetylneuraminic acid however not its O-acetylated kind. Mol. Biochem. Parasitol. 51, 49–54 (1992).

33.

Sim, B. Okay., Chitnis, C. E., Wasniowska, Okay., Hadley, T. J. & Miller, L. H. Receptor and ligand domains for invasion of erythrocytes by Plasmodium falciparum. Science 264, 1941–1944 (1994).

34.

Tolia, N., Enemark, E., Sim, B. & Joshua-Tor, L. Structural foundation for the EBA-175 erythrocyte invasion pathway of the malaria parasite Plasmodium falciparum. Cell 122, 183 (2005).

35.

Chen, E. et al. Structural and useful foundation for inhibition of erythrocyte invasion by antibodies that focus on Plasmodium falciparum EBA-175. PLoS Pathog. 9, e1003390 (2013).

36.

Salinas, N. D., Paing, M. M. & Tolia, N. H. Important glycosylated residues in exon three of erythrocyte glycophorin A have interaction Plasmodium falciparum EBA-175 and outline receptor specificity. mBio 5, 01606-14 (2014).

37.

Salinas, N. D. & Tolia, N. H. A quantitative assay for binding and inhibition of Plasmodium falciparum Erythrocyte Binding Antigen 175 reveals excessive affinity binding relies on each DBL domains. Protein Expr. Purif. 95, 188–194 (2014).

38.

Mayer, D. C., Kaneko, O., Hudson-Taylor, D. E., Reid, M. E. & Miller, L. H. Characterization of a Plasmodium falciparum erythrocyte-binding protein paralogous to EBA-175. Proc. Natl Acad. Sci. USA 98, 5222–5227 (2001).

39.

Narum, D. L., Fuhrmann, S. R., Luu, T. & Sim, B. Okay. A novel Plasmodium falciparum erythrocyte binding protein-2 (EBP2/BAEBL) concerned in erythrocyte receptor binding. Mol. Biochem. Parasitol. 119, 159–168 (2002).

40.

Lobo, C. A., Rodriguez, M., Reid, M. & Lustigman, S. Glycophorin C is the receptor for the Plasmodium falciparum erythrocyte binding ligand PfEBP-2 (baebl). Blood 101, 4628–4631 (2003).

41.

Lin, D. H., Malpede, B. M., Batchelor, J. D. & Tolia, N. H. Crystal and answer buildings of Plasmodium falciparum erythrocyte-binding antigen 140 reveal determinants of receptor specificity throughout erythrocyte invasion. J. Biol. Chem. 287, 36830–36836 (2012).

42.

Malpede, B. M., Lin, D. H. & Tolia, N. H. Molecular foundation for sialic acid-dependent receptor recognition by the Plasmodium falciparum invasion protein erythrocyte-binding antigen-140/BAEBL. J. Biol. Chem. 288, 12406–12415 (2013).

43.

Lopaticki, S. et al. Reticulocyte and erythrocyte binding-like proteins operate cooperatively in invasion of human erythrocytes by malaria parasites. Infect. Immun. 79, 1107–1117 (2011).

44.

Persson, Okay. E. et al. Erythrocyte-binding antigens of Plasmodium falciparum are targets of human inhibitory antibodies and performance to evade naturally acquired immunity. J. Immunol. 191, 785–794 (2013).

45.

Gilberger, T. W. et al. A novel erythrocyte binding antigen-175 paralogue from Plasmodium falciparum defines a brand new trypsin-resistant receptor on human erythrocytes. J. Biol. Chem. 278, 14480–14486 (2003).

46.

Mayer, D. C. et al. Polymorphism within the Plasmodium falciparum erythrocyte-binding ligand JESEBL/EBA-181 alters its receptor specificity. Proc. Natl Acad. Sci. USA 101, 2518–2523 (2004).

47.

Maier, A. G., Baum, J., Smith, B., Conway, D. J. & Cowman, A. F. Polymorphisms in erythrocyte binding antigens 140 and 181 have an effect on operate and binding however not receptor specificity in Plasmodium falciparum. Infect. Immun. 77, 1689–1699 (2009).

48.

Mayer, D. C. et al. Glycophorin B is the erythrocyte receptor of Plasmodium falciparum erythrocyte-binding ligand, EBL-1. Proc. Natl Acad. Sci. USA 106, 5348–5352 (2009).

49.

Ntumngia, F. B. et al. A novel erythrocyte binding protein of Plasmodium vivax suggests an alternate invasion pathway into Duffy-positive reticulocytes. mBio 7, e01261-16 (2016).

50.

Gruszczyk, J. et al. Transferrin receptor 1 is a reticulocyte-specific receptor for. Science 359, 48–55 (2018).

51.

Orjuela-Sanchez, P. et al. Greater microsatellite range in Plasmodium vivax than in sympatric Plasmodium falciparum populations in Pursat, Western Cambodia. Exp. Parasitol. 134, 318–326 (2013).

52.

Hostetler, J. B. et al. Impartial origin and international distribution of distinct Plasmodium vivax Duffy binding protein gene duplications. PLoS Negl. Trop. Dis. 10, e0005091 (2016).

53.

Nicolete, V. C., Frischmann, S., Barbosa, S., King, C. L. & Ferreira, M. U. Naturally acquired binding-inhibitory antibodies to Plasmodium vivax Duffy binding protein and scientific immunity to malaria in rural Amazonians. J. Infect. Dis. 214, 1539–1546 (2016).

54.

Wardemann, H. & Kofer, J. Expression cloning of human B cell immunoglobulins. Strategies Mol. Biol. 971, 93–111 (2013).

55.

Tiller, T. et al. Environment friendly technology of monoclonal antibodies from single human B cells by single cell RT–PCR and expression vector cloning. J. Immunol. Strategies 329, 112–124 (2008).

56.

Giudicelli, V., Brochet, X. & Lefranc, M. P. IMGT/V-QUEST: IMGT standardized evaluation of the immunoglobulin (IG) and T cell receptor (TR) nucleotide sequences. Chilly Spring Harb. Protoc. 2011, 695–715 (2011).

57.

Stothard, P. The sequence manipulation suite: JavaScript applications for analyzing and formatting protein and DNA sequences. Biotechniques 28, 1104 (2000).

58.

Mirsky, A., Kazandjian, L. & Anisimova, M. Antibody-specific mannequin of amino acid substitution for immunological inferences from alignments of antibody sequences. Mol. Biol. Evol. 32, 806–819 (2015).

59.

Kabsch, W. Xds. Acta Crystallogr. D 66, 125–132 (2010).

60.

McCoy, A. J. et al. Phaser crystallographic software program. J. Appl. Crystallogr. 40, 658–674 (2007).

61.

Marcatili, P., Rosi, A. & Tramontano, A. PIGS: automated prediction of antibody buildings. Bioinformatics 24, 1953–1954 (2008).

62.

Adams, P. D. et al. PHENIX: constructing new software program for automated crystallographic construction dedication. Acta Crystallogr. D 58, 1948–1954 (2002).

63.

Emsley, P. & Cowtan, Okay. Coot: model-building instruments for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

64.

Davis, I. W. et al. MolProbity: all-atom contacts and construction validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007).

65.

Krissinel, E. & Henrick, Okay. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

66.

Morin, A. et al. Collaboration will get probably the most out of software program. eLife 2, e01456 (2013).

67.

Rangel, G. W. et al. Enhanced ex vivo Plasmodium vivax intraerythrocytic enrichment and maturation for speedy and delicate parasite development assays. Antimicrob. Brokers Chemother. 62, e02519-17 (2018).

68.

Russell, B. et al. A dependable ex vivo invasion assay of human reticulocytes by Plasmodium vivax. Blood 118, e74–e81 (2011).

69.

Choe, H. et al. Sulphated tyrosines mediate affiliation of chemokines and Plasmodium vivax Duffy binding protein with the Duffy antigen/receptor for chemokines (DARC). Mol. Microbiol. 55, 1413–1422 (2005).

70.

Nóbrega de Sousa, T., Carvalho, L. H. & Alves de Brito, C. F. Worldwide genetic variability of the Duffy binding protein: insights into Plasmodium vivax vaccine improvement. PLoS ONE 6, e22944 (2011).

71.

Larkin, M. A. et al. Clustal W and Clustal X model 2.zero. Bioinformatics 23, 2947–2948 (2007).

72.

Waterhouse, A. M., Procter, J. B., Martin, D. M., Clamp, M. & Barton, G. J. Jalview Model 2–a a number of sequence alignment editor and evaluation workbench. Bioinformatics 25, 1189–1191 (2009).

73.

Brochet, X., Lefranc, M. P. & Giudicelli, V. IMGT/V-QUEST: the extremely custom-made and built-in system for IG and TR standardized V-J and V-D-J sequence evaluation. Nucleic Acids Res. 36, W503–W508 (2008).


Supply hyperlink
asubhan

wordpress autoblog

amazon autoblog

affiliate autoblog

wordpress web site

web site improvement

Show More

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Close