Suicide inactivation of the uracil DNA glycosylase UdgX by covalent complicated formation


Barnes, D. E. & Lindahl, T. Restore and genetic penalties of endogenous DNA base harm in mammalian cells. Annu. Rev. Genet. 38, 445–476 (2004).


Visnes, T. et al. Uracil in DNA and its processing by completely different DNA glycosylases. Philos. Trans. R. Soc. Lond. B 364, 563–568 (2009).


Lindahl, T., Ljungquist, S., Siegert, W., Nyberg, B. & Sperens, B. DNA N-glycosidases: properties of uracil-DNA glycosidase from Escherichia coli. J. Biol. Chem. 252, 3286–3294 (1977).


Li, J., Yang, Y., Guevara, J., Wang, L. & Cao, W. Identification of a prototypical single-stranded uracil DNA glycosylase from Listeria innocua. DNA Restore 57, 107–115 (2017).


Xia, B. et al. Correlated mutation within the evolution of catalysis in uracil DNA glycosylase superfamily. Sci. Rep. 7, 45978 (2017).


Xia, B. et al. Specificity and catalytic mechanism in household 5 uracil DNA glycosylase. J. Biol. Chem. 289, 18413–18426 (2014).


Parikh, S. S., Putnam, C. D. & Tainer, J. A. Classes discovered from structural outcomes on uracil-DNA glycosylase. Mutat. Res. 460, 183–199 (2000).


Pearl, L. H. Construction and performance within the uracil-DNA glycosylase superfamily. Mutat. Res. 460, 165–181 (2000).


Mol, C. D. et al. Crystal construction of human uracil-DNA glycosylase in complicated with a protein inhibitor: protein mimicry of DNA. Cell 82, 701–708 (1995).


Slupphaug, G. et al. A nucleotide-flipping mechanism from the construction of human uracil-DNA glycosylase sure to DNA. Nature 384, 87–92 (1996).


Maiti, A., Morgan, M. T., Pozharski, E. & Drohat, A. C. Crystal construction of human thymine DNA glycosylase sure to DNA elucidates sequence-specific mismatch recognition. Proc. Natl Acad. Sci. USA 105, 8890–8895 (2008).


Zhang, L. et al. Thymine DNA glycosylase particularly acknowledges 5-carboxylcytosine-modified DNA. Nat. Chem. Biol. eight, 328–330 (2012).


Wibley, J. E., Waters, T. R., Haushalter, Ok., Verdine, G. L. & Pearl, L. H. Construction and specificity of the vertebrate anti-mutator uracil-DNA glycosylase SMUG1. Mol. Cell 11, 1647–1659 (2003).


Hoseki, J. et al. Crystal construction of a household four uracil-DNA glycosylase from Thermus thermophilus HB8. J. Mol. Biol. 333, 515–526 (2003).


Kawai, A. et al. Crystal construction of household four uracil-DNA glycosylase from Sulfolobus tokodaii and a perform of tyrosine 170 in DNA binding. FEBS Lett. 589, 2675–2682 (2015).


Kosaka, H., Hoseki, J., Nakagawa, N., Kuramitsu, S. & Masui, R. Crystal construction of household 5 uracil-DNA glycosylase sure to DNA. J. Mol. Biol. 373, 839–850 (2007).


Venkatesh, J., Kumar, P., Krishna, P. S., Manjunath, R. & Varshney, U. Significance of uracil DNA glycosylase in Pseudomonas aeruginosa and Mycobacterium smegmatis, G+C-rich micro organism, in mutation prevention, tolerance to acidified nitrite, and endurance in mouse macrophages. J. Biol. Chem. 278, 24350–24358 (2003).


Sang, P. B., Srinath, T., Patil, A. G., Woo, E. J. & Varshney, U. A novel uracil-DNA binding protein of the uracil DNA glycosylase superfamily. Nucleic Acids Res. 43, 8452–8463 (2015).


Saikrishnan, Ok. et al. Area closure and motion of uracil DNA glycosylase (UDG): buildings of recent crystal types containing the Escherichia coli enzyme and a comparative research of the identified buildings involving UDG. Acta Crystallogr. D 58, 1269–1276 (2002).


Hashimoto, H., Zhang, X. & Cheng, X. D. Excision of thymine and 5-hydroxymethyluracil by the MBD4 DNA glycosylase area: structural foundation and implications for energetic DNA demethylation. Nucleic Acids Res. 40, 8276–8284 (2012).


Woods, R. D. et al. Construction and stereochemistry of the bottom excision restore glycosylase MutY reveal a mechanism just like retaining glycosidases. Nucleic Acids Res. 44, 801–810 (2016).


Stivers, J. T. & Jiang, Y. L. A mechanistic perspective on the chemistry of DNA restore glycosylases. Chem. Rev. 103, 2729–2759 (2003).


Champoux, J. J. DNA topoisomerases: construction, perform, and mechanism. Annu. Rev. Biochem. 70, 369–413 (2001).


Gao, Z., Maloney, D. J., Dedkova, L. M. & Hecht, S. M. Inhibitors of DNA polymerase beta: exercise and mechanism. Bioorg. Med. Chem. 16, 4331–4340 (2008).


Gros, C. et al. DNA methylation inhibitors in most cancers: latest and future approaches. Biochimie 94, 2280–2296 (2012).


Haracska, L., Prakash, L. & Prakash, S. A mechanism for the exclusion of low-fidelity human Y-family DNA polymerases from base excision restore. Genes Dev. 17, 2777–2785 (2003).


Hazra, T. Ok. et al. Oxidative DNA harm restore in mammalian cells: a brand new perspective. DNA Restore 6, 470–480 (2007).


Heidrun, I., Hong Jing, C. & Champoux, J. J. Human Tdp1 cleaves a broad spectrum of substrates, together with phosphoamide linkages. J. Biol. Chem. 280, 36518 (2005).


Ide, H. & Kotera, M. Human DNA glycosylases concerned within the restore of oxidatively broken DNA. Biol. Pharm. Bull. 27, 480–485 (2004).


Khodyreva, S. N. et al. Apurinic/apyrimidinic (AP) website recognition by the 5′-dRP/AP lyase in poly(ADP-ribose) polymerase-1 (PARP-1). Proc. Natl Acad. Sci. USA 107, 22090–22095 (2010).


Steven, A. R. et al. Ku is a 5′-dRP/AP lyase that excises nucleotide harm close to damaged ends. Nature 464, 1214 (2010).


Tubbs, J. L., Pegg, A. E. & Tainer, J. A. DNA binding, nucleotide flipping, and the helix-turn-helix motif in base restore by O6-alkylguanine-DNA alkyltransferase and its implications for most cancers chemotherapy. DNA Restore 6, 1100–1115 (2007).


Zhang, Z., Cheng, B. & Tse-Dinh, Y. C. Crystal construction of a covalent intermediate in DNA cleavage and rejoining by Escherichia coli DNA topoisomerase I. Proc Natl Acad. Sci. USA 108, 6939–6944 (2011).


Pluta, R. et al. Structural foundation of a histidine-DNA nicking/becoming a member of mechanism for gene switch and promiscuous unfold of antibiotic resistance. Proc. Natl Acad. Sci. USA 114, E6526–E6535 (2017).


McCann, J. A. & Berti, P. J. Transition state evaluation of acid-catalyzed dAMP hydrolysis. J. Am. Chem. Soc. 129, 7055–7064 (2007).


Vocadlo, D. J., Davies, G. J., Laine, R. & Withers, S. G. Catalysis by hen egg-white lysozyme proceeds by way of a covalent intermediate. Nature 412, 835–838 (2001).


Messick, T. E. et al. Noncysteinyl coordination to the [4Fe-4S]2+ cluster of the DNA restore adenine glycosylase MutY launched by way of site-directed mutagenesis. Structural characterization of an uncommon histidinyl-coordinated cluster. Biochemistry 41, 3931–3942 (2002).


Engstrom, L. M., Partington, O. A. & David, S. S. An iron–sulfur cluster loop motif within the archaeoglobus fulgidus uracil-dna glycosylase mediates environment friendly uracil recognition and removing. Biochemistry 51, 5187–5197 (2012).


Cole, S. T. et al. Deciphering the biology of Mycobacterium tuberculosis from the entire genome sequence. Nature 393, 537–544 (1998).


Heewook, L., Ellen, P., Haixu, T. & Foster, P. L. Fee and molecular spectrum of spontaneous mutations within the bacterium Escherichia coli as decided by whole-genome sequencing. Proc. Natl Acad. Sci. USA 109, 16416–16417 (2012).


Kunkel, T. A. & Erie, D. A. DNA mismatch restore. Annu. Rev. Biochem. 74, 681–710 (2005).


Sassetti, C. M. & Rubin, E. J. Genetic necessities for mycobacterial survival throughout an infection. Proc. Natl Acad. Sci. USA 100, 12989–12994 (2003).


Kucukyildirim, S. et al. The speed and spectrum of spontaneous mutations in Mycobacterium smegmatis, a bacterium naturally devoid of the postreplicative mismatch restore pathway. G3 6, 2157–2163 (2016).


Malshetty, V. S., Jain, R., Srinath, T., Kurthkoti, Ok. & Varshney, U. Synergistic results of UdgB and Ung in mutation prevention and safety in opposition to generally encountered DNA damaging brokers in Mycobacterium smegmatis. Microbiology 156, 940–949 (2010).


Wanner, R. M. et al. The uracil DNA glycosylase UdgB of Mycobacterium smegmatis protects the organism from the mutagenic results of cytosine and adenine deamination. J. Bacteriol. 191, 6312–6319 (2009).


Van der Veen, S. & Tang, C. M. The BER requirements: the restore of DNA harm in human-adapted bacterial pathogens. Nat. Rev. Microbiol. 13, 83–94 (2015).


Minor, W., Cymborowski, M., Otwinowski, Z. & Chruszcz, M. HKL-3000: the mixing of information discount and construction solution-from diffraction photos to an preliminary mannequin in minutes. Acta Crystallogr. D 62, 859–866 (2010).


Mccoy, A. J. et al. Phaser crystallographic software program. J. Appl. Crystallogr. 40, 658–674 (2007).


Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, Ok. Options and improvement of COOT. Acta Crystallogr. D 66, 486–501 (2010).


Afonine, P. V. et al. In direction of automated crystallographic construction refinement with phenix.refine. Acta Crystallogr. D 68, 352–367 (2012).


Chen, V. B. et al. MolProbity: all-atom construction validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).


Painter, J. & Merritt, E. A. Optimum description of a protein construction when it comes to a number of teams present process TLS movement. Acta Crystallogr. D 62, 439–450 (2006).


Winn, M. D., Isupov, M. N. & Murshudov, G. N. Use of TLS parameters to mannequin anisotropic displacements in macromolecular refinement. Acta Crystallogr. D 57, 122–133 (2001).


Baker, N. A., Sept, D., Joseph, S., Holst, M. J. & McCammon, J. A. Electrostatics of nanosystems: utility to microtubules and the ribosome. Proc. Natl Acad. Sci. USA 98, 10037–10041 (2001).


Stivala, A., Wybrow, M., Wirth, A., Whisstock, J. C. & Stuckey, P. J. Computerized technology of protein construction cartoons with Professional-Origami. Bioinformatics 27, 3315–3316 (2011).

Supply hyperlink

wordpress autoblog

amazon autoblog

affiliate autoblog

wordpress web site

web site improvement

Show More

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *