Chemistry

Sulfur metabolites that facilitate oceanic phytoplankton–micro organism carbon flux


1.

Fuhrman JA. Marine viruses and their biogeochemical and ecological results. Nature. 1999;399:541.

2.

Morán XAG, Ducklow HW, Erickson M. Carbon fluxes by estuarine micro organism replicate coupling with phytoplankton. Mar Ecol Prog Ser. 2013;489:75–85.

Three.

Hansell DA. Recalcitrant dissolved natural carbon fractions. Ann Rev Marine Sci. 2013;5:421–45. https://doi.org/10.1146/annurev-marine-120710-100757.

four.

Dupont CL, Rusch DB, Yooseph S, Lombardo M-J, Richter RA, Valas R, et al. Genomic insights to SAR86, an ample and uncultivated marine bacterial lineage. ISME J. 2012;6:1186–99.

5.

Tripp HJ, Kitner JB, Schwalbach MS, Dacey JW, Wilhelm LJ, Giovannoni SJ. SAR11 marine micro organism require exogenous lowered sulphur for progress. Nature. 2008;452:741–four. https://doi.org/10.1038/nature06776.

6.

Sunda W, Kieber D, Kiene R, Huntsman S. An antioxidant perform for DMSP and DMS in marine algae. Nature. 2002;418:317–20.

7.

Strom S, Wolfe G, Slajer A, Lambert S, Clough J. Chemical protection within the microplankton II: inhibition of protist feeding by beta-dimethylsulfoniopropionate (DMSP). Limnol Oceanogr. 2003;48:230–7.

eight.

Kiene RP, Linn LJ, Bruton JA. New and necessary roles for DMSP in marine microbial communities. J Sea Res. 2000;43:209–24.

9.

Kaiser Okay, Benner R. Natural matter transformations within the higher mesopelagic zone of the North Pacific: chemical composition and linkages to microbial group construction. J Geophys Res Oceans. 2012;C10123:117.

10.

Mopper Okay, Schultz CA, Chevolot L, Germain C, Revuelta R, Dawson R. Willpower of sugars in unconcentrated seawater and different pure waters by liquid chromatography and pulsed amperometric detection. Environ Sci Technol. 1992;26:133–eight.

11.

Azam F, Malfatti F. Microbial structuring of marine ecosystems. Nat Rev Microbiol. 2007;5:782–91. https://doi.org/10.1038/nrmicro1747.

12.

McCarren J, Becker JW, Repeta DJ, Shi Y, Younger CR, Malmstrom RR, et al. Microbial group transcriptomes reveal microbes and metabolic pathways related to dissolved natural matter turnover within the sea. Proc Natl Acad Sci USA. 2010;107:16420–7. https://doi.org/10.1073/pnas.1010732107.

13.

Poretsky RS, Solar S, Mou X, Moran MA. Transporter genes expressed by coastal bacterioplankton in response to dissolved natural carbon. Environ Microbiol. 2010;12:616–27. https://doi.org/10.1111/j.1462-2920.2009.02102.x.

14.

Satinsky BM, Crump BC, Smith CB, Sharma S, Zielinski BL, Doherty M, et al. Microspatial gene expression patterns within the Amazon River Plume. Proc Natl Acad Sci USA. 2014;111:11085–90.

15.

Landa M, Burns AS, Roth SJ, Moran MA. Bacterial transcriptome transforming throughout sequential co-culture with a marine dinoflagellate and diatom. ISME J. 2017;11:2677–90.

16.

Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie Okay, Salazar G, et al. Construction and performance of the worldwide ocean microbiome. Science. 2015;348:1261359.

17.

Kiene RP, Service SK. Decomposition of dissolved DMSP and DMS in estuarine waters: dependence on temperature and substrate focus. Mar Ecol Prog Ser. 1991;76:1–11.

18.

Stewart FJ, Ottesen EA, DeLong EF. Growth and quantitative analyses of a common rRNA-subtraction protocol for microbial metatranscriptomics. ISME J. 2010;four:896–907.

19.

Langmead B, Salzberg SL. Quick gapped-read alignment with Bowtie 2. Nat Strategies. 2012;9:357–9.

20.

Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput sequencing information. Bioinformatics. 2015;31:166–9.

21.

Wagner GP, Kin Okay, Lynch VJ. Measurement of mRNA abundance utilizing RNA-seq information: RPKM measure is inconsistent amongst samples. Concept Biosci. 2012;131:281–5.

22.

Love M, Anders S, Huber W. Differential evaluation of depend information—the DESeq2 package deal. Genome Biol. 2014;15:550.

23.

Oksanen J, Blanchet FG, Pleasant M, Kindt R, Legendre P, McGlinn D et al. vegan: Neighborhood Ecology Package deal. 2017. https://CRAN.R-project.org/package deal=vegan.

24.

Buchfink B, Xie C, Huson DH. Quick and delicate protein alignment utilizing Diamond. Nat Strategies. 2014;12:59–60.

25.

Busby WF. Sulfopropanedial and cysteinolic acid within the diatom. Biochim Biophys Acta. 1966;121:160–1.

26.

Busby WF, Benson AA. Sulfonic acid metabolism within the diatom Navicula pelliculosa. Plant Cell Physiol. 1973;14:1123–32.

27.

Durham BP, Sharma S, Luo H, Smith CB, Amin SA, Bender SJ, et al. Cryptic carbon and sulfur biking between floor ocean plankton. Proc Natl Acad Sci USA. 2015;112:453–7. https://doi.org/10.1073/pnas.1413137112.

28.

Mayer J, Huhn T, Habeck M, Denger Okay, Hollemeyer Okay, Cook dinner AM. 2, Three-Dihydroxypropane-1-sulfonate degraded by Cupriavidus pinatubonensis JMP134: purification of dihydroxypropanesulfonate Three-dehydrogenase. Microbiology. 2010;156:1556–64.

29.

Shibuya I, Yagi T, Benson AA. In Japanese Society of Plant Physiologists, editor. Research on microalgae and photosynthetic micro organism. Tokyo: College of Tokyo Press; 1963. p. 627–36.

30.

Denger Okay, Lehmann S, Cook dinner AM. Molecular genetics and biochemistry of N-acetyltaurine degradation by Cupriavidus necator H16. Microbiology. 2011;157:2983–91.

31.

Gorzynska AK, Denger Okay, Cook dinner AM, Smits TH. Inducible transcription of genes concerned in taurine uptake and dissimilation by Silicibacter pomeroyi DSS-3T. Arch Microbiol. 2006;185:402.

32.

Weinitschke S, Sharma PI, Stingl U, Cook dinner AM, Smits TH. Gene clusters concerned in isethionate degradation by terrestrial and marine micro organism. Appl Environ Microbiol. 2010;76:618–21.

33.

Jackson AE, Ayer SW, Laycock MV. The impact of salinity on progress and amino acid composition within the marine diatom Nitzschia pungens. Can J Bot. 1992;70:2198–201.

34.

Boroujerdi AF, Lee PA, DiTullio GR, Janech MG, Vied SB, Bearden DW. Identification of isethionic acid and different small molecule metabolites of Fragilariopsis cylindrus with nuclear magnetic resonance. Anal Bioanal Chem. 2012;404:777–84.

35.

Lidbury I, Kimberley G, Scanlan DJ, Murrell JC, Chen Y. Comparative genomics and mutagenesis analyses of choline metabolism within the marine Roseobacter clade. Environ Microbiol. 2015;17:5048–62.

36.

Ikawa M, Taylor RF. In Martin D, Padilla G, editors. Marine pharmacognosy. Choline and associated substances in algae. New York: Tutorial Press; 1973. p. 203–40.

37.

Taylor RF, Ikawa M, Sasner JJ Jr, Thurberg FP, Andersen KK. Prevalence of choline esters within the marine dionflagellate Amphidinium carteri. J Phycol. 1974;10:279–83.

38.

Kiene RP, Linn LJ, González J, Moran MA, Bruton JA. Dimethylsulfoniopropionate and methanethiol are necessary precursors of methionine and protein-sulfur in marine bacterioplankton. Appl Environ Microbiol. 1999;65:4549–58.

39.

Keller MD, Bellows WK, Guillard RR. In Saltzman ES, Cooper WJ, editors. Biogenic sulfur within the atmosphere. Dimethyl sulfide manufacturing in marine phytoplankton. Washington D.C.: ACS Publications; 1989. p. 167–82.

40.

Curson AR, Todd JD, Sullivan MJ, Johnston AW. Catabolism of dimethylsulphoniopropionate: microorganisms, enzymes and genes. Nat Rev Microbiol. 2011;9:849.

41.

Simó R. Manufacturing of atmospheric sulfur by oceanic plankton: biogeochemical, ecological and evolutionary hyperlinks. Traits Ecol Evol. 2001;16:287–94.

42.

Moran MA, Reisch CR, Kiene RP, Whitman WB. Genomic insights into bacterial DMSP transformations. Annu Rev Mar Sci. 2012;four:523–42.

43.

Eyice Ö, Schäfer H. Tradition-dependent and culture-independent strategies reveal numerous methylotrophic communities in terrestrial environments. Arch Microbiol. 2016;198:17–26.

44.

Suylen G, Massive P, Van Dijken J, Kuenen J. Methyl mercaptan oxidase, a key enzyme within the metabolism of methylated sulphur compounds by Hyphomicrobium EG. Microbiology. 1987;133:2989–97.

45.

Eyice Ö, Myronova N, Pol A, Carrión O, Todd JD, Smith TJ, et al. Bacterial SBP56 recognized as a Cu-dependent methanethiol oxidase broadly distributed within the biosphere. ISME J. 2017;12:145.

46.

González JM, Kiene RP, Moran MA. Transformation of sulfur compounds by an ample lineage of marine micro organism within the α-subclass of the category proteobacteria. Appl Environ Microbiol. 1999;65:3810–9.

47.

Todd JD, Curson AR, Sullivan MJ, Kirkwood M, Johnston AW. The Ruegeria pomeroyi acuI gene has a task in DMSP catabolism and resembles yhdH of E. coli and different micro organism in conferring resistance to acrylate. PLoS ONE. 2012;7:e35947.

48.

Varaljay VA, Robidart J, Preston CM, Gifford SM, Durham BP, Burns AS, et al. Single-taxon area measurements of bacterial gene regulation controlling DMSP destiny. ISME J. 2015;9:1677–86.

49.

Lehmann S. Sulfite dehydrogenases in organotrophic micro organism: enzymes, genes and regulation. Konstanz, Germany: College of Konstanz; 2013.

50.

Lenk S, Moraru C, Hahnke S, Arnds J, Richter M, Kube M, et al. Roseobacter clade micro organism are ample in coastal sediments and encode a novel mixture of sulfur oxidation genes. ISME J. 2012;6:2178–87.

51.

Denger Okay, Smits TH, Cook dinner AM. l-Cysteate sulpho-lyase, a widespread pyridoxal 5′-phosphate-coupled desulphonative enzyme purified from Silicibacter pomeroyi DSS-3T. Biochem J. 2006;394:657–64.

52.

Reisch CR, Crabb WM, Gifford SM, Teng Q, Stoudemayer MJ, Moran MA, et al. Metabolism of dimethylsulphoniopropionate by Ruegeria pomeroyi DSS‐Three. Mol Microbiol. 2013;89:774–91.

53.

Lei L, Cherukuri KP, Alcolombri U, Meltzer D, Tawfik DS. The dimethylsulfoniopropionate (DMSP) lyase and lyase-like cupin household consists of bona fide DMSP lyases in addition to different enzymes with unknown perform. Biochemistry. 2018;57:3364–77.

54.

Curson AR, Williams BT, Pinchbeck BJ, Sims LP, Martínez AB, Rivera PPL, et al. DSYB catalyses the important thing step of dimethylsulfoniopropionate biosynthesis in lots of phytoplankton. Nat Microbiol. 2018;Three:430.

55.

Galí M, Devred E, Levasseur M, Royer S-J, Babin M. A distant sensing algorithm for planktonic dimethylsulfoniopropionate (DMSP) and an evaluation of worldwide patterns. Distant Sens Environ. 2015;171:171–84.

56.

Stefels J. Physiological features of the manufacturing and conversion of DMSP in marine algae and better crops. J Sea Res. 2000;43:183–97.

57.

Denger Okay, Weiss M, Felux A-Okay, Schneider A, Mayer C, Spiteller D, et al. Sulphoglycolysis in Escherichia coli Okay-12 closes a niche within the biogeochemical sulphur cycle. Nature. 2014;507:114–7.

58.

Saidha T, Stern AI, Schiff JA. Taurine conjugates within the lipid fraction of Euglena cells and their mitochondria. Microbiology. 1993;139:251–7.

59.

Clifford EL, Hansell DA, Varela MM, Nieto‐Cid M, Herndl GJ, Sintes E. Crustacean zooplankton launch copious quantities of dissolved natural matter as taurine within the ocean. Limnol Oceanogr. 2017;62:2745–58.

60.

Thume Okay, Gebser B, Chen L, Meyer N, Kieber DJ & Pohnert G. The metabolite dimethylsulfoxonium propionate extends the marine organosulfur cycle. Nature. 2018. https://doi.org/10.1038/s41586-018-0675-Zero.

61.

Ksionzek KB, Lechtenfeld OJ, McCallister SL, Schmitt-Kopplin P, Geuer JK, Geibert W, et al. Dissolved natural sulfur within the ocean: Biogeochemistry of a petagram stock. Science. 2016;354:456–9.

62.

Howard EC, Henriksen JR, Buchan A, Reisch CR, Bürgmann H, Welsh R, et al. Bacterial taxa that restrict sulfur flux from the ocean. Science. 2006;314:649–52.

63.

Reisch CR, Stoudemayer MJ, Varaljay VA, Amster IJ, Moran MA, Whitman WB. Novel pathway for assimilation of dimethylsulphoniopropionate widespread in marine micro organism. Nature. 2011;473:208–11.

64.

Bullock HA, Reisch CR, Burns AS, Moran MA, Whitman WB. Regulatory and practical variety of methylmercaptopropionate coenzyme A ligases from the dimethylsulfoniopropionate demethylation pathway in Ruegeria pomeroyi DSS-Three and different proteobacteria. J Bacteriol. 2014;196:1275–85.

65.

Wirth JS. Phylogenomics and the metabolism of sulfur compounds within the Roseobacter group. Athens, GA, USA: College of Georgia; 2019.

66.

Todd JD, Kirkwood M, Newton-Payne S, Johnston AW. DddW, a 3rd DMSP lyase in a mannequin Roseobacter marine bacterium, Ruegeria pomeroyi DSS-Three. ISME J. 2012;6:223–6.

67.

Todd JD, Rogers R, Li YG, Wexler M, Bond PL, Solar L, et al. Structural and regulatory genes required to make the gasoline dimethyl sulfide in micro organism. Science. 2007;315:666–9.

68.

Todd J, Curson A, Dupont C, Nicholson P, Johnston A. The dddP gene, encoding a novel enzyme that converts dimethylsulfoniopropionate into dimethyl sulfide, is widespread in ocean metagenomes and marine micro organism and likewise happens in some Ascomycete fungi. Environ Microbiol. 2009;11:1376–85.

69.

Todd JD, Curson AR, Kirkwood M, Sullivan MJ, Inexperienced RT, Johnston AW. DddQ, a novel, cupin‐containing, dimethylsulfoniopropionate lyase in marine roseobacters and in uncultured marine micro organism. Environ Microbiol. 2011;13:427–38.

70.

Brüggemann C, Denger Okay, Cook dinner AM, Ruff J. Enzymes and genes of taurine and isethionate dissimilation in Paracoccus denitrificans. Microbiology. 2004;150:805–16.


Supply hyperlink
asubhan

wordpress autoblog

amazon autoblog

affiliate autoblog

wordpress web site

web site improvement

Show More

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Close