Synergistic substrate cofeeding stimulates reductive metabolism


Ledesma-Amaro, R. & Nicaud, J. M. Metabolic engineering for increasing the substrate vary of Yarrowia lipolytica. Tendencies Biotechnol. 34, 798–809 (2016).


Atsumi, S., Hanai, T. & Liao, J. C. Non-fermentative pathways for synthesis of branched-chain larger alcohols as biofuels. Nature 451, 86–89 (2008).


Xue, Z. et al. Manufacturing of omega-Three eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica. Nat. Biotechnol. 31, 734–740 (2013).


Qiao, Okay. J., Wasylenko, T. M., Zhou, Okay., Xu, P. & Stephanopoulos, G. Lipid manufacturing in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism. Nat. Biotechnol. 35, 173–177 (2017).


Kita, A. et al. Improvement of genetic transformation and heterologous expression system in carboxydotrophic thermophilic acetogen Moorella thermoacetica. J. Biosci. Bioeng. 115, 347–352 (2013).


MonodJ. Recherches sur la Croissance des Cultures Bactériennes. (Hermann: 1942).


Aristilde, L., Lewis, I. A., Park, J. O. & Rabinowitz, J. D. Hierarchy in pentose sugar metabolism in Clostridium acetobutylicum. Appl. Environ. Microbiol. 81, 1452–1462 (2015).


Görke, B. & Stülke, J. Carbon catabolite repression in micro organism: some ways to take advantage of out of vitamins. Nat. Rev. Microbiol. 6, 613–624 (2008).


Bren, A. et al. Glucose turns into one of many worst carbon sources for E. coli on poor nitrogen sources because of suboptimal ranges of cAMP. Sci. Rep. 6, 24834 (2016).


Joshua, C. J., Dahl, R., Benke, P. I. & Keasling, J. D. Absence of diauxie throughout simultaneous utilization of glucose and xylose by Sulfolobus acidocaldarius. J. Bacteriol. 193, 1293–1301 (2011).


Hermsen, R., Okano, H., You, C., Werner, N. & Hwa, T. A growth-rate composition method for the expansion of E. coli on co-utilized carbon substrates. Mol. Syst. Biol. 11, 801 (2015).


Kanno, M., Carroll, A. L. & Atsumi, S. World metabolic rewiring for improved CO2 fixation and chemical manufacturing in cyanobacteria. Nat. Commun. eight, 14724 (2017).


Martinez, Okay. et al. Coutilization of glucose and glycerol enhances the manufacturing of fragrant compounds in an Escherichia coli pressure missing the phosphoenolpyruvate: carbohydrate phosphotransferase system. Microb. Cell Truth. 7, 1 (2008).


Meyer, F. et al. Methanol-essential progress of Escherichia coli. Nat. Commun. 9, 1508 (2018).


Garcia Sanchez, R. et al. Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae pressure utilizing evolutionary engineering. Biotechnol. Biofuels Three, 13 (2010).


Kim, S. M. et al. Simultaneous utilization of glucose and xylose by way of novel mechanisms in engineered Escherichia coli. Metab. Eng. 30, 141–148 (2015).


Jones, S. W. et al. CO2 fixation by anaerobic non-photosynthetic mixotrophy for improved carbon conversion. Nat. Commun. 7, 12800 (2016).


Bowes, G., Ogren, W. L. & Hageman, R. H. Mild saturation, photosynthesis charge, RuDP carboxylase exercise, and particular leaf weight in soybeans grown below totally different gentle intensities. Crop Sci. 12, 77 (1972).


Xu, J., Liu, N., Qiao, Okay., Vogg, S. & Stephanopoulos, G. Utility of metabolic controls for the maximization of lipid manufacturing in semicontinuous fermentation. Proc. Natl Acad. Sci. USA 114, E5308–E5316 (2017).


Ratledge, C. & Wynn, J. P. The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv. Appl. Microbiol. 51, 1–51 (2002).


Qiao, Okay. et al. Engineering lipid overproduction within the oleaginous yeast Yarrowia lipolytica. Metab. Eng. 29, 56–65 (2015).


Fontanille, P., Kumar, V., Christophe, G., Nouaille, R. & Larroche, C. Bioconversion of unstable fatty acids into lipids by the oleaginous yeast Yarrowia lipolytica. Bioresour. Technol. 114, 443–449 (2012).


Liu, N., Qiao, Okay. & Stephanopoulos, G. 13C metabolic flux evaluation of acetate conversion to lipids by Yarrowia lipolytica. Metab. Eng. 38, 86–97 (2016).


Gancedo, J. M. Carbon catabolite repression in yeast. Eur. J. Biochem. 206, 297–313 (1992).


Casazza, J. P. & Veech, R. L. The interdependence of glycolytic and pentose cycle intermediates in advert libitum fed rats. J. Biol. Chem. 261, 690–698 (1986).


Ragsdale, S. W. & Pierce, E. Acetogenesis and the Wooden–Ljungdahl pathway of CO2 fixation. Biochim. Biophys. Acta 1784, 1873–1898 (2008).


Mall, A. et al. Reversibility of citrate synthase permits autotrophic progress of a thermophilic bacterium. Science 359, 563–567 (2018).


Nunoura, T. et al. A primordial and reversible TCA cycle in a facultatively chemolithoautotrophic thermophile. Science 359, 559–563 (2018).


Schuchmann, Okay. & Müller, V. Autotrophy on the thermodynamic restrict of life: a mannequin for power conservation in acetogenic micro organism. Nat. Rev. Microbiol. 12, 809–821 (2014).


Daniell, J., Köpke, M. & Simpson, S. Industrial biomass syngas fermentation. Energies 5, 5372–5417 (2012).


Hu, P., Rismani-Yazdi, H. & Stephanopoulos, G. Anaerobic CO2 fixation by the acetogenic bacterium Moorella thermoacetica. AIChE J. 59, 3176–3183 (2013).


Blazeck, J. et al. Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel manufacturing. Nat. Commun. 5, 3131 (2014).


Babel, W., Brinkmann, U. & Muller, R. H. The auxiliary substrate idea: an method for overcoming limits of microbial performances. Acta Biotechnol. 13, 211–242 (1993).


Babel, W. The auxiliary substrate idea: from easy concerns to heuristically beneficial information. Eng. Life Sci. 9, 285–290 (2009).


Daniel, S. L., Hsu, T., Dean, S. I. & Drake, H. L. Characterization of the H2- and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui. J. Bacteriol. 172, 4464–4471 (1990).


Ledesma-Amaro, R., Dulermo, R., Niehus, X. & Nicaud, J. M. Combining metabolic engineering and course of optimization to enhance manufacturing and secretion of fatty acids. Metab. Eng. 38, 38–46 (2016).


Martin, V. J., Pitera, D. J., Withers, S. T., Newman, J. D. & Keasling, J. D. Engineering a mevalonate pathway in Escherichia coli for manufacturing of terpenoids. Nat. Biotechnol. 21, 796–802 (2003).


Haynes, C. A. & Gonzalez, R. Rethinking organic activation of methane and conversion to liquid fuels. Nat. Chem. Biol. 10, 331–339 (2014).


Tai, M. & Stephanopoulos, G. Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel manufacturing. Metab. Eng. 15, 1–9 (2013).


Michaelis, L. & Guzman Barron, E. S. Oxidation-reduction techniques of organic significance. II. Lowering impact of cysteine induced by free metals. J. Biol. Chem. 81, 29–40 (1929).


Rabinowitz, J. D. & Kimball, E. Acidic acetonitrile for mobile metabolome extraction from Escherichia coli. Anal. Chem. 79, 6167–6173 (2007).


Clasquin, M. F., Melamud, E. & Rabinowitz, J. D. LC–MS information processing with MAVEN: a metabolomic evaluation and visualization engine. Curr. Protoc. Bioinformatics Chapter 14, Unit14.11 (2012).


Tracy, B. P., Jones, S. W., Quick, A. G., Indurthi, D. C. & Papoutsakis, E. T. Clostridia: the significance of their distinctive substrate and metabolite variety for biofuel and biorefinery functions. Curr. Opin. Biotechnol. 23, 364–381 (2012).


Islam, M. A., Zengler, Okay., Edwards, E. A., Mahadevan, R. & Stephanopoulos, G. Investigating Moorella thermoacetica metabolism with a genome-scale constraint-based metabolic mannequin. Integr. Biol. (Camb.) 7, 869–882 (2015).


Schellenberger, J. et al. Quantitative prediction of mobile metabolism with constraint-based fashions: the COBRA Toolbox Nat. Protoc. 6, 1290–1307 (2011).


Antoniewicz, M. R., Kelleher, J. Okay. & Stephanopoulos, G. Elementary metabolite models (EMU): a novel framework for modeling isotopic distributions. Metab. Eng. 9, 68–86 (2007).


Antoniewicz, M. R., Kelleher, J. Okay. & Stephanopoulos, G. Willpower of confidence intervals of metabolic fluxes estimated from steady isotope measurements. Metab. Eng. eight, 324–337 (2006).

Supply hyperlink

wordpress autoblog

amazon autoblog

affiliate autoblog

wordpress web site

web site growth

Show More

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *