The dynamic and structural properties of axonemal tubulins help the excessive size stability of cilia


Carvalho-Santos, Z., Azimzadeh, J., Pereira-Leal, J. B. & Bettencourt-Dias, M. Evolution: Tracing the origins of centrioles, cilia, and flagella. J. Cell Biol. 194, 165–175 (2011).


Goetz, S. C. The first cilium: a signalling centre throughout vertebrate improvement. Nat. Rev. Genet. 11, 331–344 (2010).


Singla, V. & Reiter, J. F. The first cilium because the cell’s antenna: signaling at a sensory organelle. Science 313, 629–633 (2006).


Nicastro, D. et al. The molecular structure of axonemes revealed by cryoelectron tomography. Science 313, 944–948 (2006).


Ishikawa, H. & Marshall, W. F. Ciliogenesis: constructing the cell’s antenna. Nat. Rev. Mol. Cell Biol. 12, 222–234 (2011).


Ichikawa, M. et al. Subnanometre-resolution construction of the doublet microtubule reveals new lessons of microtubule-associated proteins. Nat. Commun. eight, 15035 (2017).


Behnke, O. & Forer, A. Proof for 4 lessons of microtubules in particular person cells. J. Cell Sci. 2, 169–192 (1967).


Witman, G. B., Carlson, Okay. & Rosenbaum, J. L. Chlamydomonas flagella. II. The Distribution of Tubulins 1 and within the Outer Doublet Mirotubules. Micro. J. Cell Biol. 54, 540–555 (1972).


Mitchison, T. & Kirschner, M. Dynamic instability of microtubule progress. Nature 312, 237–242 (1984).


Kirschner, M. & Mitchison, T. Past self-assembly: from microtubules to morphogenesis. Cell 45, 329–342 (1986).


Desai, A. & Mitchison, T. J. Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol. 13, 83–117 (1997).


Howard, J. & Hyman, A. A. Dynamics and mechanics of the microtubule plus finish. Nature 422, 753–758 (2003).


Hendel, N. L., Thomson, M. & Marshall, W. F. Diffusion as a Ruler: Modeling Kinesin Diffusion as a Size Sensor for Intraflagellar Transport. Biophys. J. 114, 663–674 (2018).


Wloga, D. & Gaertig, J. Put up-translational modifications of microtubules. J. Cell Sci. 124, 154–154 (2010).


Janke, C. The tubulin code: molecular elements, readout mechanisms, and features. J. Cell Biol. 206, 461–472 (2014).


Roll-Mecak, A. How cells exploit tubulin range to construct purposeful mobile microtubule mosaics. Curr. Opin. Cell Biol. 56, 102–108 (2018).


Gadadhar, S. et al. Tubulin glycylation controls major cilia size. J. Cell Biol. 216, 2701–2713 (2017).


Wloga, D. et al. TTLL3 Is a Tubulin Glycine Ligase that Regulates the Meeting of Cilia. Dev. Cell 16, 867–876 (2009).


Pathak, N., Austin, C. A. & Drummond, I. A. Tubulin tyrosine ligase-like genes ttll3 and ttll6 preserve zebrafish cilia construction and motility. J. Biol. Chem. 286, 11685–11695 (2011).


Bosch Grau, M. et al. Tubulin glycylases and glutamylases have distinct features in stabilization and motility of ependymal cilia. J. Cell Biol. 202, 441–451 (2013).


Kubo, T., Hirono, M., Aikawa, T., Kamiya, R. & Witman, G. B. Diminished tubulin polyglutamylation suppresses flagellar shortness in Chlamydomonas. Mol. Biol. Cell 26, 2810–2822 (2015).


Kubo, T., Yanagisawa, H.-A., Yagi, T., Hirono, M. & Kamiya, R. Tubulin polyglutamylation regulates axonemal motility by modulating actions of inner-arm dyneins. Curr. Biol. 20, 441–445 (2010).


Suryavanshi, S. et al. Tubulin glutamylation regulates ciliary motility by altering inside dynein arm exercise. Curr. Biol. 20, 435–440 (2010).


Alper, J. D., Decker, F., Agana, B. & Howard, J. The motility of axonemal dynein is regulated by the tubulin code. Biophys. J. 107, 2872–2880 (2014).


Kathir, P. et al. Molecular map of the Chlamydomonas reinhardtii nuclear genome. Eukaryot. Cell 2, 362–379 (2003).


Youngblom, J., Schloss, J. A. & Silflow, C. D. The 2 beta-tubulin genes of Chlamydomonas reinhardtii code for equivalent proteins. Mol. Cell. Biol. four, 2686–2696 (1984).


James, S. W., Silflow, C. D., Stroom, P. & Lefebvre, P. A. A mutation within the alpha 1-tubulin gene of Chlamydomonas reinhardtii confers resistance to anti-microtubule herbicides. J. Cell Sci. 106, 209–218 (1993).


Kuriyama, R. In vitro polymerization of flagellar and ciliary outer fiber tubulin into microtubules. J. Biochem. 80, 153–165 (1976).


Binder, L. I. & Rosenbaum, J. L. The in vitro meeting of flagellar outer doublet tubulin. J. Cell Biol. 79, 500–515 (1978).


Hofmeister, F. Zur Lehre von der Wirkung der Salze. Arch. Exp. Pathol. Pharmacol. 24, 247–260 (1888).


Baldwin, R. L. How Hofmeister ion interactions have an effect on protein stability. Biophysj 71, 2056–2063 (1996).


Mahamdeh, M., Simmert, S., Luchniak, A., Schäffer, E. & Howard, J. Label-free high-speed wide-field imaging of single microtubules utilizing interference reflection microscopy. J. Microsc. 1991, 95–66 (2018).


Hill, T. L. & Carlier, M. F. Regular-state principle of the interference of GTP hydrolysis within the mechanism of microtubule meeting. Proc. Natl. Acad. Sci. USA 80, 7234–7238 (1983).


Gardner, M. Okay. et al. Fast microtubule self-assembly kinetics. Cell 146, 582–592 (2011).


Walker, R. A. et al. Dynamic instability of particular person microtubules analyzed by video gentle microscopy: price constants and transition frequencies. J. Cell Biol. 107, 1437–1448 (1988).


Toso, R. J., Jordan, M. A., Farrell, Okay. W., Matsumoto, B. & Wilson, L. Kinetic stabilization of microtubule dynamic instability in vitro by vinblastine. Biochemistry 32, 1285–1293 (1993).


Lechtreck, Okay. F. & Geimer, S. Distribution of polyglutamylated tubulin within the flagellar equipment of inexperienced flagellates. Cell Motil. Cytoskelet. 47, 219–235 (2000).


Kubo, T. & Oda, T. Electrostatic interplay between polyglutamylated tubulin and the nexin-dynein regulatory advanced regulates flagellar motility. Mol. Biol. Cell 28, 2260–2266 (2017).


Kubo, T., Yagi, T. & Kamiya, R. Tubulin polyglutamylation regulates flagellar motility by controlling a selected inner-arm dynein that interacts with the dynein regulatory advanced. Cytoskeleton 69, 1059–1068 (2012).


Magiera, M. M. & Janke, C. Investigating tubulin posttranslational modifications with particular antibodies. Strategies Cell Biol. 115, 247–267 (2013).


McIntosh, J. R. et al. Microtubules develop by the addition of bent guanosine triphosphate tubulin to the ideas of curved protofilaments. J. Cell Biol. 265, jcb.201802138 (2018).


Guesdon, A. et al. EB1 interacts with outwardly curved and straight areas of the microtubule lattice. Nat. Cell Biol. 18, 1102–1108 (2016).


Chrétien, D., Fuller, S. D. & Karsenti, E. Construction of rising microtubule ends: two-dimensional sheets shut into tubes at variable charges. J. Cell Biol. 129, 1311–1328 (1995).


Kerssemakers, J. W. J. et al. Meeting dynamics of microtubules at molecular decision. Nature 442, 709–712 (2006).


Schek, H. T., Gardner, M. Okay., Cheng, J., Odde, D. J. & Hunt, A. J. Microtubule meeting dynamics on the nanoscale. Curr. Biol. 17, 1445–1455 (2007).


Zhang, R., Alushin, G. M., Brown, A. & Nogales, E. Mechanistic origin of microtubule dynamic instability and its modulation by EB proteins. Cell 162, 849–859 (2015).


Manka, S. W. & Moores, C. A. The position of tubulin-tubulin lattice contacts within the mechanism of microtubule dynamic instability. Nat. Struct. Mol. Biol. 114, 977 (2018).


Choudhary, C. et al. Lysine acetylation targets protein complexes and co-regulates main mobile features. Science 325, 834–840 (2009).


Nawrotek, A., Knossow, M. & Gigant, B. The determinants that govern microtubule meeting from the atomic construction of GTP-tubulin. J. Mol. Biol. 412, 35–42 (2011).


Tyler, Okay. M., Wagner, G. Okay., Wu, Q. & Huber, Okay. T. Practical significance might underlie the taxonomic utility of single amino acid substitutions in conserved proteins. J. Mol. Evol. 70, 395–402 (2010).


Nielsen, M. G., Turner, F. R., Hutchens, J. A. & Raff, E. C. Axoneme-specific beta-tubulin specialization: a conserved C-terminal motif specifies the central pair. Curr. Biol. 11, 529–533 (2001).


Vent, J. et al. Direct involvement of the isotype-specific C-terminus of beta tubulin in ciliary beating. J. Cell Sci. 118, 4333–4341 (2005).


Jensen-Smith, H. C., Ludueña, R. F. & Hallworth, R. Requirement for the betaI and betaIV tubulin isotypes in mammalian cilia. Cell Motil. Cytoskelet. 55, 213–220 (2003).


Serrano, L., la Torre, de, J., Maccioni, R. B. & Avila, J. Involvement of the carboxyl-terminal area of tubulin within the regulation of its meeting. Proc. Natl. Acad. Sci. USA 81, 5989–5993 (1984).


Aiken, J. et al. Genome-wide evaluation reveals novel and discrete features for tubulin carboxy-terminal tails. Curr. Biol. 24, 1295–1303 (2014).


Liu, Y. et al. H+− and Na+− elicited speedy adjustments of the microtubule cytoskeleton within the biflagellated inexperienced alga Chlamydomonas. eLife 6, 3415 (2017).


Stoddard, D. et al. Tetrahymena RIB72A and RIB72B are microtubule inside proteins within the ciliary doublet microtubules. Mol. Biol. Cell 29, 2566–2577 (2018).


Mandelkow, E. M. Microtubule dynamics and microtubule caps: a time-resolved cryo- electron microscopy research. J. Cell Biol. 114, 977–991 (1991).


Nogales, E. & Wang, H.-W. Structural mechanisms underlying nucleotide-dependent self-assembly of tubulin and its kinfolk. Curr. Opin. Struct. Biol. 16, 221–229 (2006).


Brouhard, G. J. & Rice, L. M. The contribution of αβ-tubulin curvature to microtubule dynamics. J. Cell Biol. 207, 323–334 (2014).


Ayaz, P., Ye, X., Huddleston, P., Brautigam, C. A. & Rice, L. M. A. TOG:αβ-tubulin advanced construction reveals conformation-based mechanisms for a microtubule polymerase. Science 337, 857–860 (2012).


Pecqueur, L. et al. A designed ankyrin repeat protein chosen to bind to tubulin caps the microtubule plus finish. Proc. Natl Acad. Sci. USA 109, 12011–12016 (2012).


Rice, L. M., Montabana, E. A. & Agard, D. A. The lattice as allosteric effector: Structural research of alpha beta- and gamma-tubulin make clear the position of GTP in microtubule meeting. Proc. Natl Acad. Sci. USA 105, 5378–5383 (2008).


Vitre, B. et al. EB1 regulates microtubule dynamics and tubulin sheet closure in vitro. Nat. Cell Biol. 10, 415–421 (2008).


Müller-Reichert, T., Chrétien, D., Severin, F. & Hyman, A. A. Structural adjustments at microtubule ends accompanying GTP hydrolysis: data from a slowly hydrolyzable analogue of GTP, guanylyl (alpha,beta)methylenediphosphonate. Proc. Natl Acad. Sci. USA 95, 3661–3666 (1998).


Honnappa, S., Slicing, B., Jahnke, W., Seelig, J. & Steinmetz, M. O. Thermodynamics of the Op18/Stathmin-Tubulin Interplay. J. Biol. Chem. 278, 38926–38934 (2003).


Barbier, P. et al. Stathmin and interfacial microtubule inhibitors acknowledge a naturally curved conformation of tubulin dimers. J. Biol. Chem. 285, 31672–31681 (2010).


Alper, J., Geyer, V., Mukundan, V. & Howard, J. Reconstitution of flagellar sliding. Meth. Enzymol. 524, 343–369 (2013).


Gorman, D. S. & Levine, R. P. Cytochrome f and plastocyanin: their sequence within the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proc. Natl Acad. Sci. USA 54, 1665–1669 (1965).


Castoldi, M. & Popov, A. V. Purification of mind tubulin by means of two cycles of polymerization-depolymerization in a high-molarity buffer. Protein Expr. Purif. 32, 83–88 (2003).


Gell, C. et al. Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy. Strategies Cell Biol. 95, 221–245 (2010).


Ruhnow, F., Zwicker, D. & Diez, S. Monitoring single particles and elongated filaments with nanometer precision. Biophys. J. 100, 2820–2828 (2011).


Tarantino, N. et al. TNF and IL-1 exhibit distinct ubiquitin necessities for inducing NEMO-IKK supramolecular buildings. J. Cell Biol. 204, 231–245 (2014).

Supply hyperlink

wordpress autoblog

amazon autoblog

affiliate autoblog

wordpress web site

web site improvement

Show More

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *