Chemistry

The nuclear interactome of DYRK1A reveals a useful function in DNA harm restore


1.

Bronicki, L. M. et al. Ten new circumstances additional delineate the syndromic mental incapacity phenotype brought on by mutations in DYRK1A. Eur J Hum Genet 23, 1482–1487 (2015).

2.

van Bon, B. W. et al. Disruptive de novo mutations of DYRK1A result in a syndromic type of autism and ID. Mol Psychiatry 21, 126–132 (2016).

Three.

Antonarakis, S. E. Down syndrome and the complexity of genome dosage imbalance. Nat Rev Genet, https://doi.org/10.1038/nrg.2016.154 (2016).

four.

Canzonetta, C. et al. DYRK1A-dosage imbalance perturbs NRSF/REST ranges, deregulating pluripotency and embryonic stem cell destiny in Down syndrome. Am J Hum Genet 83, 388–400 (2008).

5.

Dowjat, W. Okay. et al. Trisomy-driven overexpression of DYRK1A kinase within the mind of topics with Down syndrome. Neurosci Lett 413, 77–81 (2007).

6.

Malinge, S. et al. Elevated dosage of the chromosome 21 ortholog Dyrk1a promotes megakaryoblastic leukemia in a murine mannequin of Down syndrome. J Clin Make investments 122, 948–962 (2012).

7.

Hammerle, B. et al. Transient expression of Mnb/Dyrk1a cell cycle exit and differentiation of neuronal precursors by inducing p27KIP1 expression and suppressing NOTCH signaling. Growth 138, 2543–2554 (2011).

eight.

Najas, S. et al. DYRK1A-mediated Cyclin D1 Degradation in Neural Stem Cells Contributes to the Neurogenic Cortical Defects in Down Syndrome. EBioMedicine 2, 120–134 (2015).

9.

Lott, I. T. & Dierssen, M. Cognitive deficits and related neurological problems in people with Down’s syndrome. Lancet Neurol 9, 623–633 (2010).

10.

Wegiel, J. et al. The function of overexpressed DYRK1A protein within the early onset of neurofibrillary degeneration in Down syndrome. Acta Neuropathol 116, 391–407 (2008).

11.

Hasle, H., Clemmensen, I. H. & Mikkelsen, M. Dangers of leukaemia and stable tumours in people with Down’s syndrome. Lancet 355, 165–169 (2000).

12.

Birger, Y. & Izraeli, S. DYRK1A in Down syndrome: an oncogene or tumor suppressor? J Clin Make investments 122, 807–810 (2012).

13.

Widowati, E. W., Ernst, S., Hausmann, R., Muller-Newen, G. & Becker, W. Practical characterization of DYRK1A missense variants related to a syndromic type of mental deficiency and autism. Biol Open 7 (2018).

14.

Arranz, J. et al. Impaired growth of neocortical circuits contributes to the neurological alterations in DYRK1A haploinsufficiency syndrome. bioRxiv 438861, https://doi.org/10.1101/438861 (2018).

15.

Kentrup, H. et al. Dyrk, a twin specificity protein kinase with distinctive structural options whose exercise depends on tyrosine residues between subdomains VII and VIII. J Biol Chem 271, 3488–3495 (1996).

16.

Lochhead, P. A., Sibbet, G., Morrice, N. & Cleghon, V. Activation-loop autophosphorylation is mediated by a novel transitional intermediate type of DYRKs. Cell 121, 925–936 (2005).

17.

Salichs, E., Ledda, A., Mularoni, L., Alba, M. M. & de la Luna, S. Genome-wide evaluation of histidine repeats reveals their function within the localization of human proteins to the nuclear speckles compartment. PLoS Genet 5, e1000397 (2009).

18.

Lepagnol-Bestel, A. M. et al. DYRK1A interacts with the REST/NRSF-SWI/SNF chromatin remodelling advanced to decontrol gene clusters concerned within the neuronal phenotypic traits of Down syndrome. Hum Mol Genet 18, 1405–1414 (2009).

19.

Alvarez, M., Altafaj, X., Aranda, S. & de la Luna, S. DYRK1A autophosphorylation on serine residue 520 modulates its kinase exercise by way of 14-Three-Three binding. Mol Biol Cell 18, 1167–1178 (2007).

20.

Sitz, J. H., Tigges, M., Baumgartel, Okay., Khaspekov, L. G. & Lutz, B. Dyrk1A potentiates steroid hormone-induced transcription by way of the chromatin reworking issue Arip4. Mol Cell Biol 24, 5821–5834 (2004).

21.

Di Vona, C. et al. Chromatin-wide profiling of DYRK1A reveals a job as a gene-specific RNA polymerase II CTD kinase. Mol Cell 57, 506–520 (2015).

22.

Kung, J. E. & Jura, N. Structural Foundation for the Non-catalytic Features of Protein Kinases. Construction 24, 7–24 (2016).

23.

Ryoo, S.-R. et al. DYRK1A-mediated hyperphosphorylation of Tau. A useful hyperlink between Down syndrome and Alzheimer illness. J. Biol. Chem. 282, 34850–34857 (2007).

24.

Lu, H. et al. Part-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Nature, https://doi.org/10.1038/s41586-018-0174-Three(2018).

25.

Alvarez, M., Estivill, X. & de la Luna, S. DYRK1A accumulates in splicing speckles via a novel concentrating on sign and induces speckle disassembly. J Cell Sci 116, 3099–3107 (2003).

26.

Yin, X. et al. Twin-specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1A) modulates serine/arginine-rich protein 55 (SRp55)-promoted Tau exon 10 inclusion. J Biol Chem 287, 30497–30506 (2012).

27.

Aranda, S., Laguna, A. & de la Luna, S. DYRK household of protein kinases: evolutionary relationships, biochemical properties, and useful roles. FASEB J 25, 449–462 (2011).

28.

Huttlin, E. L. et al. The BioPlex Community: A Systematic Exploration of the Human Interactome. Cell 162, 425–440 (2015).

29.

Hein, M. Y. et al. A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell 163, 712–723 (2015).

30.

Varjosalo, M. et al. The Protein Interplay Panorama of the Human CMGC Kinase Group. Cell Rep. Three, 1306–1320 (2013).

31.

Huttlin, E. L. et al. Structure of the human interactome defines protein communities and illness networks. Nature 545, 505–509 (2017).

32.

Gibson, T. J., Seiler, M. & Veitia, R. A. The transience of transient overexpression. Nat Strategies 10, 715–721 (2013).

33.

Papp, B., Pal, C. & Hurst, L. D. Dosage sensitivity and the evolution of gene households in yeast. Nature 424, 194–197 (2003).

34.

Rice, A. M. & McLysaght, A. Dosage sensitivity is a significant determinant of human copy quantity variant pathogenicity. Nat Commun eight, 14366 (2017).

35.

Funakoshi, E. et al. Overexpression of the human MNB/DYRK1A gene induces formation of multinucleate cells via overduplication of the centrosome. BMC Cell Biol. four, 12 (2003).

36.

Wisniewski, J. R., Zougman, A. & Mann, M. Mixture of FASP and StageTip-based fractionation permits in-depth evaluation of the hippocampal membrane proteome. J Proteome Res eight, 5674–5678 (2009).

37.

Senko, M. W. et al. Novel Parallelized Quadrupole/Linear Ion Entice/Orbitrap Tribrid Mass Spectrometer Bettering Proteome Protection and Peptide Identification Charges. Anal. Chem. 85, 11710–11714 (2013).

38.

Mellacheruvu, D. et al. The CRAPome: a contaminant repository for affinity purification–mass spectrometry knowledge. Nat. Strategies 10, 730–736 (2013).

39.

Lambert, J. P., Tucholska, M., Go, C., Knight, J. D. & Gingras, A. C. Proximity biotinylation and affinity purification are complementary approaches for the interactome mapping of chromatin-associated protein complexes. J Proteomics 118, 81–94 (2015).

40.

Miyata, Y. & Nishida, E. DYRK1A binds to an evolutionarily conserved WD40-repeat protein WDR68 and induces its nuclear translocation. Biochim. Biophys. Acta – Mol. Cell Res. 1813, 1728–1739 (2011).

41.

Bindea, G. et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25, 1091–1093 (2009).

42.

Wang, B. & Elledge, S. J. Ubc13/Rnf8 ubiquitin ligases management foci formation of the Rap80/Abraxas/Brca1/Brcc36 advanced in response to DNA harm. Proc Natl Acad Sci USA 104, 20759–20763 (2007).

43.

Wu, Q. et al. Construction of BRCA1-BRCT/Abraxas Complicated Reveals Phosphorylation-Dependent BRCT Dimerization at DNA Injury Websites. Mol Cell 61, 434–448 (2016).

44.

Zhang, J. et al. Haploinsufficiency of the E3 ubiquitin-protein ligase gene TRIP12 causes mental incapacity with or with out autism spectrum problems, speech delay, and dysmorphic options. Hum Genet 136, 377–386 (2017).

45.

Chang, L., Zhang, Z., Yang, J., McLaughlin, S. H. & Barford, D. Atomic construction of the APC/C and its mechanism of protein ubiquitination. Nature 522, 450–454 (2015).

46.

Ha, Okay. et al. The anaphase selling advanced impacts restore alternative by defending ubiquitin signalling at DNA harm websites. Nat Commun eight, 15751 (2017).

47.

Prinz, S., Hwang, E. S., Visintin, R. & Amon, A. The regulation of Cdc20 proteolysis reveals a job for APC parts Cdc23 and Cdc27 throughout S part and early mitosis. Curr Biol eight, 750–760 (1998).

48.

Sudo, T. et al. Activation of Cdh1-dependent APC is required for G1 cell cycle arrest and DNA damage-induced G2 checkpoint in vertebrate cells. EMBO J 20, 6499–6508 (2001).

49.

Fraser, H. B., Hirsh, A. E., Wall, D. P. & Eisen, M. B. Coevolution of gene expression amongst interacting proteins. Proc Natl Acad Sci USA 101, 9033–9038 (2004).

50.

Lachmann, A. et al. Large mining of publicly accessible RNA-seq knowledge from human and mouse. Nat. Commun. 9, 1366 (2018).

51.

Kuleshov, M. V. et al. Enrichr: a complete gene set enrichment evaluation net server 2016 replace. Nucleic Acids Res. 44, W90–7 (2016).

52.

An, L. et al. Twin-utility NLS drives RNF169-dependent DNA harm responses. Proc Natl Acad Sci USA 114, E2872–E2881 (2017).

53.

Poulsen, M., Lukas, C., Lukas, J., Bekker-Jensen, S. & Mailand, N. Human RNF169 is a destructive regulator of the ubiquitin-dependent response to DNA double-strand breaks. J. Cell Biol. 197, 189–199 (2012).

54.

An, L. et al. RNF169 limits 53BP1 deposition at DSBs to stimulate single-strand annealing restore. Proc Natl Acad Sci USA 115, E8286–e8295 (2018).

55.

Fradet-Turcotte, A. et al. 53BP1 is a reader of the DNA-damage-induced H2A Lys 15 ubiquitin mark. Nature 499, 50–54 (2013).

56.

Wilson, M. D. et al. The structural foundation of modified nucleosome recognition by 53BP1. Nature 536, 100–103 (2016).

57.

Chapman, J. R., Sossick, A. J., Boulton, S. J. & Jackson, S. P. BRCA1-associated exclusion of 53BP1 from DNA harm websites underlies temporal management of DNA restore. J Cell Sci 125, 3529–3534 (2012).

58.

Schultz, L. B., Chehab, N. H., Malikzay, A. & Halazonetis, T. D. p53 binding protein 1 (53BP1) is an early participant within the mobile response to DNA double-strand breaks. J. Cell Biol. 151, 1381–90 (2000).

59.

Li, J. et al. Identification of Human Neuronal Protein Complexes Reveals Biochemical Actions and Convergent Mechanisms of Motion in Autism Spectrum Issues. Cell Syst. 1, 361–374 (2015).

60.

Kyrieleis, O. J. P. et al. Three-Dimensional Structure of the Human BRCA1-A Histone Deubiquitinase Core Complicated. Cell Rep 17, 3099–3106 (2016).

61.

Wang, B., Hurov, Okay., Hofmann, Okay. & Elledge, S. J. NBA1, a brand new participant within the Brca1 A posh, is required for DNA harm resistance and checkpoint management. Genes Dev 23, 729–739 (2009).

62.

Wang, B. et al. Abraxas and RAP80 type a BRCA1 protein advanced required for the DNA harm response. Science (80-.). 316, 1194–1198 (2007).

63.

Moreno, A. et al. Unreplicated DNA remaining from unperturbed S phases passes via mitosis for decision in daughter cells. Proc. Natl. Acad. Sci. USA 113, E5757–64 (2016).

64.

Tahtouh, T. et al. Selectivity, Cocrystal Buildings, and Neuroprotective Properties of Leucettines, a Household of Protein Kinase Inhibitors Derived from the Marine Sponge Alkaloid Leucettamine B. J. Med. Chem. 55, 9312–9330 (2012).

65.

Ogawa, Y. et al. Growth of a novel selective inhibitor of the Down syndrome-related kinase Dyrk1A. Nat. Commun. 1, 1–9 (2010).

66.

Göckler, N. et al. Harmine particularly inhibits protein kinase DYRK1A and interferes with neurite formation. FEBS J. 276, 6324–6337 (2009).

67.

Rüben, Okay. et al. Selectivity Profiling and Organic Exercise of Novel $β$-Carbolines as Potent and Selective DYRK1 Kinase Inhibitors. PLoS One 10, e0132453 (2015).

68.

Hu, Y. et al. Regulation of 53BP1 protein stability by RNF8 and RNF168 is necessary for environment friendly DNA double-strand break restore. PLoS One 9, e110522 (2014).

69.

Karanam, Okay., Kafri, R., Loewer, A. & Lahav, G. Quantitative Dwell Cell Imaging Reveals a Gradual Shift between DNA Restore Mechanisms and a Maximal Use of HR in Mid S Part. Mol. Cell 47, 320–329 (2012).

70.

Litovchick, L., Florens, L. A., Swanson, S. Okay., Washburn, M. P. & DeCaprio, J. A. DYRK1A protein kinase promotes quiescence and senescence via DREAM advanced meeting. Genes Dev. 25, 801–813 (2011).

71.

Kastan, M. B., Onyekwere, O., Sidransky, D., Vogelstein, B. & Craig, R. W. Participation of p53 protein within the mobile response to DNA harm. Most cancers Res. 51, 6304–11 (1991).

72.

Zou, Y. et al. LncRNA OIP5-AS1 regulates radioresistance by concentrating on DYRK1A via miR-369-3p in colorectal most cancers cells. Eur. J. Cell Biol. 97, 369–378 (2018).

73.

Rycaj, Okay. & Tang, D. G. Most cancers stem cells and radioresistance. Int. J. Radiat. Biol. 90, 615–621 (2014).

74.

Lánczky, A. et al. miRpower: a web-tool to validate survival-associated miRNAs using expression knowledge from 2178 breast most cancers sufferers. Breast Most cancers Res. Deal with. 160, 439–446 (2016).

75.

Menyhárt, O., Nagy, Á. & Győrffy, B. Figuring out constant prognostic biomarkers of total survival and vascular invasion in hepatocellular carcinoma. R. Soc. Open Sci. 5, 181006 (2018).

76.

Shaiken, T. E. & Opekun, A. R. Dissecting the cell to nucleus, perinucleus and cytosol. Sci Rep four, 4923 (2014).

77.

Garrett, S., Menold, M. M. & Broach, J. R. The Saccharomyces cerevisiae YAK1 gene encodes a protein kinase that’s induced by arrest early within the cell cycle. Mol Cell Biol 11, 4045–4052 (1991).

78.

Dignam, J. D., Lebovitz, R. M. & Roeder, R. G. Correct transcription initiation by RNA polymerase II in a soluble extract from remoted mammalian nuclei. Nucleic Acids Res. 11, 1475–89 (1983).

79.

Oeck, S., Malewicz, N. M., Hurst, S., Rudner, J. & Jendrossek, V. The Focinator – a brand new open-source software for high-throughput foci analysis of DNA harm. Radiat Oncol 10, 163 (2015).

80.

Niyazi, M., Niyazi, I. & Belka, C. Counting colonies of clonogenic assays by utilizing densitometric software program. Radiat. Oncol. 2, four (2007).


Supply hyperlink
asubhan

wordpress autoblog

amazon autoblog

affiliate autoblog

wordpress web site

web site growth

Show More

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Close