Chemistry

Theoretical examine of FMO adjusted C-H cleavage and oxidative addition in nickel catalysed C-H arylation


1.

Ackermann, L. Carboxylate-assisted transition-metal-catalyzed C-H bond functionalizations: mechanism and scope. Chem. Rev. 111, 1315–1345 (2011).

2.

Balcells, D., Clot, E. & Eisenstein, O. C-H bond activation in transition metallic species from a computational perspective. Chem. Rev. 110, 749–823 (2010).

three.

He, J., Wasa, M., Chan, Okay. S. L., Shao, Q. & Yu, J. Q. Palladium-catalyzed transformations of alkyl C-H bonds. Chem. Rev. 117, 8754–8786 (2017).

four.

Li, B. & Dixneuf, P. H. sp2 C-H bond activation in water and catalytic cross-coupling reactions. Chem. Soc. Rev. 42, 5744–5767 (2013).

5.

Sperger, T., Sanhueza, I. A., Kalvet, I. & Schoenebeck, F. Computational research of synthetically related homogeneous organometallic catalysis involving Ni, Pd, Ir, and Rh: an summary of generally employed DFT strategies and mechanistic insights. Chem. Rev. 115, 9532–9586 (2015).

6.

Wencel-Delord, J. & Glorius, F. C-H bond activation permits the speedy building and late-stage diversification of useful molecules. Nat. Chem. 5, 369–375 (2013).

7.

Engle, Okay. M., Mei, T. S., Wasa, M. & Yu, J. Q. Weak coordination as a strong means for creating broadly helpful C-H functionalization reactions. Acc. Chem. Res. 45, 788–802 (2012).

Eight.

Sigman, M. S. & Werner, E. W. Imparting catalyst management upon classical palladium-catalyzed alkenyl C-H bond functionalization reactions. Acc. Chem. Res. 45, 874–884 (2012).

9.

Wang, X., Gensch, T., Lerchen, A., Daniliuc, C. G. & Glorius, F. Cp*Rh(III)/bicyclic olefin cocatalyzed C-H bond amidation by intramolecular amide switch. J. Am. Chem. Soc. 139, 6506–6512 (2017).

10.

Xie, F., Zhang, Z., Yu, X., Tang, G. & Li, X. Diaryliodoniums by Rhodium(III)-catalyzed C-H activation: gentle synthesis and diversified functionalizations. Angew. Chem. Int. Ed. 54, 7405–7409 (2015).

11.

Xu, Y., Younger, M. C. & Dong, G. Catalytic coupling between unactivated aliphatic C-H bonds and alkynes through a metal-hydride pathway. J. Am. Chem. Soc. 139, 5716–5719 (2017).

12.

Murphy, J. M., Lawrence, J. D., Kawamura, Okay., Incarvito, C. & Hartwig, J. F. Ruthenium-catalyzed regiospecific borylation of methyl C-H bonds. J. Am. Chem. Soc. 128, 13684–13685 (2006).

13.

Simonetti, M. et al. Ru-catalyzed C-H arylation of fluoroarenes with aryl halides. J. Am. Chem. Soc. 138, 3596–3606 (2016).

14.

Hong, X., Liang, Y. & Houk, Okay. N. Mechanisms and origins of switchable chemoselectivity of Ni-catalyzed C(aryl)-O and C(acyl)-O activation of aryl esters with phosphine ligands. J. Am. Chem. Soc. 136, 2017–2025 (2014).

15.

Muto, Okay., Yamaguchi, J. & Itami, Okay. Nickel-catalyzed C-H/C-O coupling of azoles with phenol derivatives. J. Am. Chem. Soc. 134, 169–172 (2012).

16.

Rosen, B. M. et al. Nickel-catalyzed cross-couplings involving carbon-oxygen bonds. Chem. Rev. 111, 1346–1416 (2011).

17.

Yao, T., Hirano, Okay., Satoh, T. & Miura, M. Nickel- and cobalt-catalyzed direct alkylation of azoles with N-tosylhydrazones bearing unactivated alkyl teams. Angew. Chem. Int. Ed. 51, 775–779 (2012).

18.

Rouquet, G. & Chatani, N. Catalytic functionalization of C(sp2)-H and C(sp3)-H bonds through the use of bidentate directing teams. Angew. Chem. Int. Ed. 52, 11726–11743 (2013).

19.

Tasker, S. Z., Standley, E. A. & Jamison, T. F. Current advances in homogeneous nickel catalysis. Nature 509, 299–309 (2014).

20.

Ananikov, V. P. Nickel: the “Spirited Horse” of transition metallic catalysis. ACS Catal. 5, 1964–1971 (2015).

21.

Heinemann, C., Hertwig, R. H., Wesendrup, R., Koch, W. & Schwarz, H. Relativistic results on bonding in cationic transition-metal-carbene complexes: a density-functional examine. J. Am. Chem. Soc. 117, 495–500 (1995).

22.

Uddin, J., Morales, C. M., Maynard, J. H. & Landis, C. R. Computational research of metallic−ligand bond enthalpies throughout the transition metallic collection. Organometallics 25, 5566–5581 (2006).

23.

Xie, H., Solar, Q., Ren, G. & Cao, Z. Mechanisms and reactivity variations for cycloaddition of anhydride to alkyne catalyzed by palladium and nickel catalysts: perception from density useful calculations. J. Org. Chem. 79, 11911–11921 (2014).

24.

Shiota, H., Ano, Y., Aihara, Y., Fukumoto, Y. & Chatani, N. Nickel-catalyzed chelation-assisted transformations involving ortho C-H bond activation: regioselective oxidative cycloaddition of fragrant amides to alkynes. J. Am. Chem. Soc. 133, 14952–14955 (2011).

25.

Aihara, Y. & Chatani, N. Nickel-catalyzed direct alkylation of C-H bonds in benzamides and acrylamides with functionalized alkyl halides through bidentate-chelation help. J. Am. Chem. Soc. 135, 5308–5311 (2013).

26.

Aihara, Y. & Chatani, N. Nickel-catalyzed response of C–H bonds in amides with I2: ortho-Iodination through the cleavage of C(sp2)–H bonds and oxidative cyclization to β-lactams through the cleavage of C(sp3)–H bonds. ACS Catal. 6, 4323–4329 (2016).

27.

Aihara, Y., Tobisu, M., Fukumoto, Y. & Chatani, N. Ni(II)-catalyzed oxidative coupling between C(sp(2))-H in benzamides and C(sp(three))-H in toluene derivatives. J. Am. Chem. Soc. 136, 15509–15512 (2014).

28.

Kubo, T. & Chatani, N. Dicumyl peroxide as a methylating reagent within the Ni-catalyzed methylation of ortho C-H bonds in fragrant amides. Org. Lett. 18, 1698–1701 (2016).

29.

Landge, V. G. et al. Nickel-catalyzed direct alkynylation of C(sp2)–H bonds of amides: an “inverse Sonogashira technique” to ortho-alkynylbenzoic acids. Catal. Sci. Technol. 6, 1946–1951 (2016).

30.

Lin, C. et al. Nickel-catalyzed direct thioetherification of beta-C(sp(three))-H bonds of aliphatic amides. Org. Lett. 17, 1340–1343 (2015).

31.

Liu, Y. J., Liu, Y. H., Yan, S. Y. & Shi, B. F. A sustainable and easy catalytic system for direct alkynylation of C(sp(2))-H bonds with low nickel loadings. Chem. Commun. 51, 6388–6391 (2015).

32.

Maity, S., Agasti, S., Earsad, A. M., Hazra, A. & Maiti, D. Nickel-catalyzed insertion of alkynes and electron-deficient olefins into unactivated sp(three) C-H bonds. Chem. -Eur. J. 21, 11320–11324 (2015).

33.

Ruan, Z., Lackner, S. & Ackermann, L. A basic technique for the nickel-catalyzed C-H alkylation of anilines. Angew. Chem. Int. Ed. 55, 3153–3157 (2016).

34.

Wang, X. et al. Nickel-catalyzed direct C (sp(three))-H arylation of aliphatic amides with thiophenes. Org. Lett. 17, 5228–5231 (2015).

35.

Wu, X., Zhao, Y. & Ge, H. Nickel-catalyzed site-selective alkylation of unactivated C(sp3)-H bonds. J. Am. Chem. Soc. 136, 1789–1792 (2014).

36.

Yang, Okay. et al. Nickel-catalyzed and benzoic acid-promoted direct sulfenylation of unactivated arenes. Chem. Commun. 51, 3582–3585 (2015).

37.

Ye, X., Petersen, J. L. & Shi, X. Nickel-catalyzed directed sulfenylation of sp(2) and sp(three) C-H bonds. Chem. Commun. 51, 7863–7866 (2015).

38.

Yi, J., Yang, L., Xia, C. & Li, F. Nickel-catalyzed alkynylation of a C(sp(2))-H bond directed by an Eight-aminoquinoline moiety. J. Org. Chem. 80, 6213–6221 (2015).

39.

Aihara, Y. & Chatani, N. Nickel-catalyzed direct arylation of C(sp3)-H bonds in aliphatic amides through bidentate-chelation help. J. Am. Chem. Soc. 136, 898–901 (2014).

40.

Iyanaga, M., Aihara, Y. & Chatani, N. Direct arylation of C(sp3)-H bonds in aliphatic amides with diaryliodonium salts within the presence of a nickel catalyst. J. Org. Chem. 79, 11933–11939 (2014).

41.

Kim, D. S., Park, W. J. & Jun, C. H. Steel-organic cooperative catalysis in C-H and C-C bond activation. Chem. Rev. 117, 8977–9015 (2017).

42.

Li, Y., Zou, L., Bai, R. & Lan, Y. Ni(i)–Ni(iii) vs. Ni(ii)–Ni(iv): mechanistic examine of Ni-catalyzed alkylation of benzamides with alkyl halides. Org. Chem. Entrance. 5, 615–622 (2018).

43.

Liu, S., Qi, X., Qu, L.-B., Bai, R. & Lan, Y. C–H bond cleavage occurring on a Rh(v) intermediate: a theoretical examine of Rh-catalyzed arene azidation. Catal. Sci. Technol. Eight, 1645–1651 (2018).

44.

Qi, X., Li, Y., Bai, R. & Lan, Y. Mechanism of rhodium-catalyzed C-H functionalization: advances in theoretical investigation. Acc. Chem. Res. 50, 2799–2808 (2017).

45.

Tan, G., Zhu, L., Liao, X., Lan, Y. & You, J. Rhodium/copper cocatalyzed extremely trans-selective 1,2-diheteroarylation of alkynes with azoles through C-H addition/oxidative cross-coupling: a mixed experimental and theoretical examine. J. Am. Chem. Soc. 139, 15724–15737 (2017).

46.

Zhang, T. et al. Computational investigation of the position performed by rhodium(V) within the rhodium(III)-catalyzed ortho-bromination of arenes. Chem. -Eur. J. 23, 2690–2699 (2017).

47.

Zhou, X. et al. Cp*CoIII-catalyzed branch-selective hydroarylation of alkynes through C–H activation: environment friendly entry to α-gem-vinylindoles. ACS Catal. 7, 7296–7304 (2017).

48.

Zhu, L. et al. Ir(III)/Ir(V) or Ir(I)/Ir(III) Catalytic Cycle? Steric-effect-controlled mechanism for the para-C–H borylation of arenes. Organometallics 36, 2107–2115 (2017).

49.

Lin, Y., Zhu, L., Lan, Y. & Rao, Y. Improvement of a rhodium(II)-catalyzed chemoselective C(sp(three))-H oxygenation. Chem. -Eur. J. 21, 14937–14942 (2015).

50.

O’Duill, M. L. et al. Tridentate directing teams stabilize six-membered palladacycles in catalytic alkene hydrofunctionalization. J. Am. Chem. Soc. 139, 15576–15579 (2017).

51.

Omer, H. M. & Liu, P. Computational examine of Ni-catalyzed C-H functionalization: elements that management the competitors of oxidative addition and radical pathways. J. Am. Chem. Soc. 139, 9909–9920 (2017).

52.

Singh, S., Okay, S. & Sunoj, R. B. Aliphatic C(sp(three))-H bond activation utilizing nickel catalysis: mechanistic insights on regioselective arylation. J. Org. Chem. 82, 9619–9626 (2017).

53.

Barsu, N., Kalsi, D. & Sundararaju, B. Carboxylate assisted Ni-catalyzed C-H bond allylation of benzamides. Chem. -Eur. J. 21, 9364–9368 (2015).

54.

Haines, B. E., Yu, J. Q. & Musaev, D. G. The mechanism of directed Ni(ii)-catalyzed C-H iodination with molecular iodine. Chem. Sci. 9, 1144–1154 (2018).

55.

Wang, X. et al. Nickel-catalyzed direct thiolation of C(sp(three))-H bonds in aliphatic amides. Org. Lett. 17, 1970–1973 (2015).

56.

Bu, Q., Rogge, T., Kotek, V. & Ackermann, L. Distal weak coordination of acetamides in ruthenium(II)-catalyzed C–H activation processes. Angew. Chem. Int. Ed. 57, 765–768 (2018).

57.

Oxgaard, J., Tenn, W. J., Nielsen, R. J., Periana, R. A. & Goddard, W. A. Mechanistic evaluation of iridium heteroatom C−H activation: proof for an inner electrophilic substitution mechanism. Organometallics 26, 1565–1567 (2007).

58.

Frisch, M. J. T., et al. Gaussian 09; Gaussian, Inc.: Wallingford, CT, 2013.

59.

Becke, A. D. Density-functional thermochemistry. III. The position of tangible change. J. Chem. Phys. 98, 5648–5652 (1993).

60.

Lee, C., Yang, W. & Parr, R. G. Improvement of the Colle-Salvetti correlation-energy components right into a useful of the electron density. Phys. Rev. B. 37, 785–789 (1988).

61.

Hopmann, Okay. H. How correct is DFT for iridium-mediated chemistry? Organometallics 35, 3795–3807 (2016).

62.

Peverati, R. & Truhlar, D. G. Bettering the accuracy of hybrid meta-GGA density functionals by vary separation. J. Phys. Chem. Lett. 2, 2810–2817 (2011).

63.

Peverati, R. & Truhlar, D. G. M11-L: an area density useful that gives improved accuracy for digital construction calculations in chemistry and physics. J. Phys. Chem. Lett. three, 117–124 (2011).

64.

Zhu, L., Qi, X. & Lan, Y. Rhodium-catalyzed hetero-(5+2) cycloaddition of vinylaziridines and alkynes: a theoretical view of the mechanism and chirality switch. Organometallics 35, 771–777 (2016).

65.

Lin, Y. S., Tsai, C. W., Li, G. D. & Chai, J. D. Lengthy-range corrected hybrid meta-generalized-gradient approximations with dispersion corrections. J. Chem. Phys. 136, 154109 (2012).

66.

Peverati, R. & Truhlar, D. G. Efficiency of the M11 and M11-L density functionals for calculations of digital excitation energies by adiabatic time-dependent density useful principle. Phys. Chem. Chem. Phys. 14, 11363–11370 (2012).

67.

Steckel, J. A. Ab initio calculations of the interplay between CO2 and the acetate ion. J. Phys. Chem. A 116, 11643–11650 (2012).

68.

Zhao, Y., Ng, H. T., Peverati, R. & Truhlar, D. G. Benchmark database for ylidic bond dissociation energies and its use for assessments of digital construction strategies. J. Chem. Concept Comput. Eight, 2824–2834 (2012).

69.

Cancès, E., Mennucci, B. & Tomasi, J. A brand new integral equation formalism for the polarizable continuum mannequin: theoretical background and functions to isotropic and anisotropic dielectrics. J. Chem. Phys. 107, 3032–3041 (1997).

70.

Cossi, M., Barone, V., Cammi, R. & Tomasi, J. Ab initio examine of solvated molecules: a brand new implementation of the polarizable continuum mannequin. Chem. Phys. Lett. 255, 327–335 (1996).


Supply hyperlink
asubhan

wordpress autoblog

amazon autoblog

affiliate autoblog

wordpress web site

web site growth

Show More

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Close