Chemistry

Traceless aptamer-mediated isolation of CD8 + T cells for chimeric antigen receptor T-cell remedy


1.

Brentjens, R. J. et al. CD19-targeted T cells quickly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci. Transl. Med. 5, 177ra138 (2013).

2.

Davila, M. L. et al. Efficacy and toxicity administration of 19-28z CAR T cell remedy in B cell acute lymphoblastic leukemia. Sci. Transl. Med. 6, 224ra225 (2014).

three.

Lee, D. W. et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in kids and younger adults: a part 1 dose-escalation trial. Lancet 385, 517–528 (2015).

four.

Mirzaei, H. R., Rodriguez, A., Shepphird, J., Brown, C. E. & Badie, B. Chimeric antigen receptors T cell remedy in stable tumor: challenges and scientific purposes. Entrance. Immunol. eight, 1850 (2017).

5.

Hale, M. et al. Engineering HIV-Resistant, anti-HIV chimeric antigen receptor T cells. Mol. Ther. 25, 570–579 (2017).

6.

Scholler, J. et al. Decade-long security and performance of retroviral-modified chimeric antigen receptor T cells. Sci. Transl. Med. four, 132ra153 (2012).

7.

Sommermeyer, D. et al. Chimeric antigen receptor-modified T cells derived from outlined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo. Leukemia 30, 492–500 (2016).

eight.

Turtle, C. J. et al. CD19 CAR–T cells of outlined CD4+:CD8+ composition in grownup B cell ALL sufferers. J. Clin. Make investments. 126, 2123–2138 (2016).

9.

Gardner, R. A. et al. Intent-to-treat leukemia remission by CD19 CAR T cells of outlined formulation and dose in kids and younger adults. Blood 129, 3322–3331 (2017).

10.

Aijaz, A. et al. Biomanufacturing for clinically superior cell therapies. Nat. Biomed. Eng. 2, 362–376 (2018).

11.

Terakura, S. et al. Technology of CD19-chimeric antigen receptor modified CD8+ T cells derived from virus-specific central reminiscence T cells. Blood 119, 72–82 (2012).

12.

Wang, X. et al. Phenotypic and purposeful attributes of lentivirus-modified CD19-specific human CD8+ central reminiscence T cells manufactured at scientific scale. J. Immunother. 35, 689–701 (2012).

13.

Voss, S. & Skerra, A. Mutagenesis of a versatile loop in streptavidin results in greater affinity for the strep-tag II peptide and improved efficiency in recombinant protein purification. Protein Eng. 10, 975–982 (1997).

14.

Knabel, M. et al. Reversible MHC multimer staining for purposeful isolation of T-cell populations and efficient adoptive switch. Nat. Med. eight, 631–637 (2002).

15.

Schmitt, A. et al. Adoptive switch and selective reconstitution of streptamer-selected cytomegalovirus-specific CD8+ T cells results in virus clearance in sufferers after allogeneic peripheral blood stem cell transplantation. Transfusion 51, 591–599 (2011).

16.

Stemberger, C. et al. Novel serial constructive enrichment expertise allows scientific multiparameter cell sorting. PLoS ONE 7, e35798 (2012).

17.

Sabatino, M. et al. Technology of clinical-grade CD19-specific CAR-modified CD8+ reminiscence stem cells for the remedy of human B-cell malignancies. Blood 128, 519–528 (2016).

18.

Ellington, A. D. & Szostak, J. W. In vitro choice of RNA molecules that bind particular ligands. Nature 346, 818–822 (1990).

19.

Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990).

20.

Robertson, D. L. & Joyce, G. F. Choice in vitro of an RNA enzyme that particularly cleaves single-stranded DNA. Nature 344, 467–468 (1990).

21.

Bunka, D. H. & Stockley, P. G. Aptamers come of age – ultimately. Nat. Rev. Microbiol. four, 588–596 (2006).

22.

Hernandez, L. I., Machado, I., Schafer, T. & Hernandez, F. J. Aptamers overview: choice, options and purposes. Curr. Prime. Med. Chem. 15, 1066–1081 (2015).

23.

Zhou, J. & Rossi, J. Aptamers as focused therapeutics: present potential and challenges. Nat. Rev. Drug Discov. 16, 181–202 (2017).

24.

Dunn, M. R., Jimenez, R. M. & Chaput, J. C. Evaluation of aptamer discovery and expertise. Nat. Rev. Chem. 1, 0076 (2017).

25.

Daniels, D. A., Chen, H., Hicke, B. J., Swiderek, Ok. M. & Gold, L. A tenascin-C aptamer recognized by tumor cell SELEX: systematic evolution of ligands by exponential enrichment. Proc. Natl Acad. Sci. USA 100, 15416–15421 (2003).

26.

Shangguan, D. et al. Aptamers advanced from dwell cells as efficient molecular probes for most cancers research. Proc. Natl Acad. Sci. USA 103, 11838–11843 (2006).

27.

Ogasawara, D., Hasegawa, H., Kaneko, Ok., Sode, Ok. & Ikebukuro, Ok. Screening of DNA aptamer towards mouse prion protein by aggressive choice. Prion 1, 248–254 (2007).

28.

Sefah, Ok., Shangguan, D., Xiong, X., O’Donoghue, M. B. & Tan, W. Growth of DNA aptamers utilizing Cell-SELEX. Nat. Protoc. 5, 1169–1185 (2010).

29.

Alam, Ok. Ok., Chang, J. L. & Burke, D. H. FASTAptamer: a bioinformatic toolkit for high-throughput sequence evaluation of combinatorial choices. Mol. Ther. Nucleic Acids four, e230 (2015).

30.

Caroli, J., Taccioli, C., De La Fuente, A., Serafini, P. & Bicciato, S. APTANI: a computational software to pick aptamers by way of sequence-structure motif evaluation of HT-SELEX information. Bioinformatics 32, 161–164 (2015).

31.

Bailey, T. L. et al. MEME SUITE: instruments for motif discovery and looking. Nucleic Acids Res. 37, W202–W208 (2009).

32.

Chen, L. et al. Aptamer-mediated environment friendly seize and launch of T lymphocytes on nanostructured surfaces. Adv. Mater. 23, 4376–4380 (2011).

33.

Li, S., Chen, N., Zhang, Z. & Wang, Y. Endonuclease-responsive aptamer-functionalized hydrogel coating for sequential catch and launch of most cancers cells. Biomaterials 34, 460–469 (2013).

34.

Xu, Y. et al. Aptamer-based microfluidic system for enrichment, sorting, and detection of a number of most cancers cells. Anal. Chem. 81, 7436–7442 (2009).

35.

Yoon, J. W. et al. Isolation of overseas material-free endothelial progenitor cells utilizing CD31 aptamer and therapeutic utility for ischemic damage. PLoS ONE 10, e0131785 (2015).

36.

Zhu, J., Nguyen, T., Pei, R., Stojanovic, M. & Lin, Q. Particular seize and temperature-mediated launch of cells in an aptamer-based microfluidic system. Lab Chip 12, 3504–3513 (2012).

37.

Labib, M. et al. Aptamer and antisense-mediated two-dimensional isolation of particular most cancers cell subpopulations. J. Am. Chem. Soc. 138, 2476–2479 (2016).

38.

Solar, N. et al. Chitosan nanofibers for particular seize and nondestructive launch of CTCs assisted by pCBMA brushes. Small 12, 5090–5097 (2016).

39.

Wan, Y. et al. Seize, isolation and launch of most cancers cells with aptamer-functionalized glass bead array. Lab Chip 12, 4693–4701 (2012).

40.

Zhang, Z., Chen, N., Li, S., Battig, M. R. & Wang, Y. Programmable hydrogels for managed cell catch and launch utilizing hybridized aptamers and complementary sequences. J. Am. Chem. Soc. 134, 15716–15719 (2012).

41.

Nozari, A. & Berezovski, M. V. Aptamers for CD antigens: from cell profiling to exercise modulation. Mol. Ther. Nucleic Acids 6, 29–44 (2017).

42.

Wang, C.-W. et al. A brand new nucleic acid−based mostly agent inhibits cytotoxic T lymphocyte−mediated immune problems. J. Allergy Clin. Immunol. 132, 713–722 (2013).

43.

Seelig, G., Soloveichik, D., Zhang, D. Y. & Winfree, E. Enzyme-free nucleic acid logic circuits. Science 314, 1585–1588 (2006).

44.

Yurke, B. & Mills, A. P. Utilizing DNA to energy nanostructures. Genet. Program. Evol. Mach. four, 111–122 (2003).

45.

Yurke, B., Turberfield, A. J., Mills, A. P. Jr., Simmel, F. C. & Neumann, J. L. A DNA-fuelled molecular machine fabricated from DNA. Nature 406, 605–608 (2000).

46.

Zhang, D. Y. & Seelig, G. Dynamic DNA nanotechnology utilizing strand-displacement reactions. Nat. Chem. three, 103–113 (2011).

47.

Zhang, D. Y. & Winfree, E. Management of DNA strand displacement kinetics utilizing toehold alternate. J. Am. Chem. Soc. 131, 17303–17314 (2009).

48.

Ruella, M. et al. Induction of resistance to chimeric antigen receptor T cell remedy by transduction of a single leukemic B cell. Nat. Med. 24, 1499–1503 (2018).

49.

Heczey, A. et al. Invariant NKT cells with chimeric antigen receptor present a novel platform for protected and efficient most cancers immunotherapy. Blood 124, 2824–2833 (2014).

50.

Eyquem, J. et al. Concentrating on a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543, 113–117 (2017).

51.

Zhao, Z. et al. Structural design of engineered costimulation determines tumor rejection kinetics and persistence of CAR T cells. Most cancers Cell 28, 415–428 (2015).

52.

Brentjens, R. J. et al. Eradication of systemic B-cell tumors by genetically focused human T lymphocytes co-stimulated by CD80 and interleukin-15. Nat. Med. 9, 279–286 (2003).

53.

Dahotre, S. N., Chang, Y. M., Wieland, A., Stammen, S. R. & Kwong, G. A. Individually addressable and dynamic DNA gates for multiplexed cell sorting. Proc. Natl Acad. Sci. USA 115, 4357–4362 (2018).

54.

Probst, C. E., Zrazhevskiy, P. & Gao, X. Fast multitarget immunomagnetic separation by way of programmable DNA linker displacement. J. Am. Chem. Soc. 133, 17126–17129 (2011).

55.

Gawande, B. N. et al. Number of DNA aptamers with two modified bases. Proc. Natl Acad. Sci. USA 114, 2898–2903 (2017).

56.

Ni, S. et al. Chemical modifications of nucleic acid aptamers for therapeutic functions. Int. J. Mol. Sci. 18, 1683 (2017).

57.

Pelloquin, F., Lamelin, J. & Lenoir, G. Human blymphocytes immortalization by epstein-barr virus within the presence of cyclosporin a. In Vitro Cell. Dev. Biol. 22, 689–694 (1986).

58.

Zadeh, J. N. et al. NUPACK: evaluation and design of nucleic acid methods. J. Comput. Chem. 32, 170–173 (2011).

59.

Tsai, H. H. et al. Regional astrocyte allocation regulates CNS synaptogenesis and restore. Science 337, 358–362 (2012).

60.

Madugula, V. & Lu, L. A ternary complicated comprising transportin1, Rab8 and the ciliary focusing on sign directs proteins to ciliary membranes. J. Cell Sci. 129, 3922–3934 (2016).

61.

Wang, J. et al. Optimizing adoptive polyclonal T cell immunotherapy of lymphomas, utilizing a chimeric T cell receptor possessing CD28 and CD137 costimulatory domains. Hum. Gene Ther. 18, 712–725 (2007).


Supply hyperlink
asubhan

wordpress autoblog

amazon autoblog

affiliate autoblog

wordpress web site

web site growth

Show More

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Close