Tracing and constraining anthropogenic aerosol iron fluxes to the North Atlantic Ocean utilizing iron isotopes


Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci 6, 701–710 (2013).


Moore, J. Okay., Doney, S. C., Glover, D. M. & Fung, I. Y. Iron biking and nutrient-limitation patterns in floor waters of the World Ocean. Deep Sea Res. Pt II. 49, 463–507 (2001).


Geider, R. J. & La Roche, J. The function of iron in phytoplankton photosynthesis, and the potential for iron-limitation of main productiveness within the sea. Photosynth. Res. 39, 275–301 (1994).


Schlitzer, R. et al. The GEOTRACES Intermediate Knowledge Product 2017. Chem. Geol. 493, 210–223 (2018).


Tagliabue, A. et al. The integral function of iron in ocean biogeochemistry. Nature 543, 51–59 (2017).


Conway, T. M. & John, S. G. Quantification of dissolved iron sources to the North Atlantic Ocean. Nature 511, 212–215 (2014).


Tagliabue, A., Aumont, O. & Bopp, L. The affect of various exterior sources of iron on the worldwide carbon cycle. Geophys. Res. Lett. 41, 920–926 (2014).


Mahowald, N. M. et al. Atmospheric international mud cycle and iron inputs to the ocean. World. Biogeochem. Cycles 19, GB4024 (2005).


Martin, J. H. Glacial-interglacial CO2 change: The Iron Speculation. Paleoceanography 5, 1–13 (1990).


Martínez-Garcia, A. et al. Southern Ocean dust-climate coupling over the previous 4 million years. Nature 476, 312–315 (2011).


Martínez-Garcia, A. et al. Iron fertilization of the Subantarctic ocean over the last ice age. Science 343, 1347–1350 (2014).


Luo, C. et al. Combustion iron distribution and deposition. World. Biogeochem. Cycles 22, GB1012 (2008).


Ito, A. & Shi, Z. Supply of anthropogenic bioavailable iron from mineral mud and combustion aerosols to the ocean. Atmos. Chem. Phys. 16, 85–99 (2016).


Sholkovitz, E. R., Sedwick, P. N. & Church, T. M. Affect of anthropogenic combustion emissions on the deposition of soluble aerosol iron to the ocean: empirical estimates for island websites within the North Atlantic. Geochim. Cosmochim. Acta 73, 3981–4003 (2009).


Sedwick, P. N., Sholkovitz, E. R. & Church, T. M. Affect of anthropogenic combustion emissions on the fractional solubility of aerosol iron: proof from the Sargasso Sea. Geochemistry, Geophys. Geosystems eight, Q10Q06 (2007).


Chuang, P. Y., Duvall, R. M., Shafer, M. M. & Schauer, J. J. The origin of water soluble particulate iron within the Asian atmospheric outflow. Geophys. Res. Lett. 32, L07813 (2005).


Guieu, C., Bonnet, S., Wagener, T. & Loÿe-Pilot, M.-D. Biomass burning as a supply of dissolved iron to the open ocean? Geophys. Res. Lett. 32, L19608 (2005).


Jickells, T. D. & Spokes, L. J. in The Biogeochemistry of Iron in Seawater (eds Turner, D. R. & Hunter, Okay. A.) 85–118 (John Wiley, Hoboken, 2001).


Baker, A. R. & Jickells, T. D. Mineral particle measurement as a management on aerosol iron solubility. Geophys. Res. Lett. 33, L17608 (2006).


Jickells, T. D., Baker, A. R. & Likelihood, R. Atmospheric transport of hint components and vitamins to the oceans. Philos. Trans. R. Soc. London A. 374, 20150286 (2016).


Trapp, J. M., Millero, F. J. & Prospero, J. M. Developments within the solubility of iron in dust-dominated aerosols within the equatorial Atlantic commerce winds: significance of iron speciation and sources. Geochemistry, Geophys. Geosystems 11, Q03014 (2010).


Sholkovitz, E. R., Sedwick, P. N., Church, T. M., Baker, A. R. & Powell, C. F. Fractional solubility of aerosol iron: synthesis of a global-scale knowledge set. Geochim. Cosmochim. Acta 89, 173–189 (2012).


Conway, T. M., Wolff, E. W., Röthlisberger, R., Mulvaney, R. & Elderfield, H. E. Constraints on soluble aerosol iron flux to the Southern Ocean on the Final Glacial Most. Nat. Commun. 6, 7850 (2015).


Wang, R. et al. Sources, transport and deposition of iron within the international ambiance. Atmos. Chem. Phys. 15, 6247–6270 (2015).


Myriokefalitakis, S. et al. Critiques and syntheses: the GESAMP atmospheric iron deposition mannequin intercomparison examine. Biogeosciences 15, 6659–6684 (2018).


Ito, A. Atmospheric processing of combustion aerosols as a supply of bioavailable iron. Environ. Sci. Technol. Lett. 2, 70–75 (2015).


Matsui, H. et al. Anthropogenic combustion iron as a fancy local weather forcer. Nat. Commun. 9, 1593 (2018).


Mahowald, N. M. et al. Aerosol hint steel leaching and impacts on marine microorganisms. Nat. Commun. 9, 2614 (2018).


Albani, S. et al. Paleodust variability for the reason that Final Glacial Most and implications for iron inputs to the ocean. Geophys. Res. Lett. 43, 3944–3954 (2016).


Tagliabue, A., Bopp, L. & Aumont, O. Evaluating the significance of atmospheric and sedimentary iron sources to Southern Ocean biogeochemistry. Geophys. Res. Lett. 36, L13601 (2009).


Mahowald, N. M. et al. Anthropocene modifications in desert space: sensitivity to local weather mannequin predictions. Geophys. Res. Lett. 34, L18817 (2007).


Beard, B. L., Johnson, C. M., Von Damm, Okay. L. & Poulson, R. L. Iron isotope constraints on Fe biking and mass stability in oxygenated Earth oceans. Geology 31, 629–632 (2003).


Waeles, M., Baker, A. R., Jickells, T. D. & Hoogewerff, J. World mud teleconnections: aerosol iron solubility and secure isotope composition. Environ. Chem. four, 233–237 (2007).


Kurisu, M., Takahashi, Y., Iizuka, T. & Uematsu, M. Very low isotope ratio of iron in nice aerosols associated to its contribution to the floor ocean. J. Geophys. Res. Atmos. 121, 11,119–11,136 (2016).


Mead, C., Herckes, P., Majestic, B. J. & Anbar, A. D. Supply apportionment of aerosol iron within the marine atmosphere utilizing iron isotope evaluation. Geophys. Res. Lett. 40, 5722–5727 (2013).


Poitrasson, F. On the iron isotope homogeneity degree of the continental crust. Chem. Geol. 235, 195–200 (2006).


Ho, T.-Y. et al. Anthropogenic aerosols: the main supply of soluble iron within the floor water of the Northwestern Pacific Ocean. AGU Ocean Sciences Assembly. Summary #CT31A-01 (2018).


Conway, T. M. et al. Tracing anthropogenic aerosol Fe sources within the North Atlantic Ocean utilizing dissolved Fe isotope ratios. AGU Ocean Sciences Assembly. Summary #CT11A-04 (2016).


Majestic, B. J., Anbar, A. D. & Herckes, P. Elemental and iron isotopic composition of aerosols collected in a parking construction. Sci. Complete Environ. 407, 5104–5109 (2009).


Kurisu, M. et al. Variation of iron isotope ratios in anthropogenic supplies emitted by means of combustion processes. Chem. Lett. 45, 970–972 (2016).


Jenkins, W. J., Smethie, W. M., Boyle, E. A. & Cutter, G. A. Water mass evaluation for the U.S. GEOTRACES (GA03) North Atlantic sections. Deep Sea Res. Half II High. Stud. Oceanogr. 116, 6–20 (2015).


Mawji, E. et al. The GEOTRACES intermediate knowledge product 2014. Mar. Chem. 177, 1–eight (2015).


Shelley, R. U., Morton, P. & Touchdown, W. M. Elemental ratios and enrichment components in aerosols from the US-GEOTRACES North Atlantic transects. Deep Sea Res. Half II High. Stud. Oceanogr. 116, 262–272 (2015).


Wozniak, A. S. et al. Relationships amongst aerosol water soluble natural matter, iron and aluminum in European, North African, and Marine air lots from the 2010 US GEOTRACES cruise. Mar. Chem. 154, 24–33 (2013).


Wozniak, A. S., Shelley, R. U., McElhenie, S. D., Touchdown, W. M. & Hatcher, P. G. Aerosol water soluble natural matter traits over the North Atlantic Ocean: implications for iron-binding ligands and iron solubility. Mar. Chem. 173, 169–172 (2015).


Li, W. et al. Air air pollution–aerosol interactions produce extra bioavailable iron for ocean ecosystems. Sci. Adv. three, e1601749 (2017).


Aguilar-Islas, A. M., Wu, J. F., Rember, R., Johansen, A. M. & Shank, L. M. Dissolution of aerosol-derived iron in seawater: Leach answer chemistry, aerosol sort, and colloidal iron fraction. Mar. Chem. 120, 25–33 (2010).


Rudnick, R. & Gao, S. in Treatise Geochemistry Vol. three, 1–64 (Elsevier, Amsterdam, 2003).


Scanza, R. A. et al. Atmospheric processing of iron in mineral and combustion aerosols: growth of an intermediate-complexity mechanism appropriate for Earth system fashions. Atmos. Chem. Phys. 18, 14175–14196 (2018).


Neale, R. B. et al. The imply local weather of the Group Environment Mannequin (CAM4) in compelled SST and absolutely coupled experiments. J. Clim. 26, 5150–5168 (2013).


Labatut, M. et al. Iron sources and dissolved-particulate interactions within the seawater of the Western Equatorial Pacific, iron isotope views. World. Biogeochem. Cycles 28, 1044–1065 (2014).


Radic, A., Lacan, F. & Murray, J. W. Iron isotopes within the seawater of the equatorial Pacific Ocean: New constraints for the oceanic iron cycle. Earth. Planet. Sci. Lett. 306, 1–10 (2011).


Dideriksen, Okay., Baker, Ja. A. & Stipp, S. L. S. Equilibrium Fe isotope fractionation between inorganic aqueous Fe(III) and the siderophore advanced, Fe(III)-desferrioxamine B. Earth. Planet. Sci. Lett. 269, 280–290 (2008).


Conway, T. M., John, S. G. & Lacan, F. Intercomparison of dissolved iron isotope profiles from reoccupation of three GEOTRACES stations within the Atlantic Ocean. Mar. Chem. 183, 50–61 (2016).


John, S. G. & Adkins, J. F. The vertical distribution of iron secure isotopes within the North Atlantic close to Bermuda. World. Biogeochem. Cycles 26, GB2034 (2012).


Conway, T. M., Palter, J. B. & de Souza, G. F. Gulf Stream rings as a supply of iron to the North Atlantic subtropical gyre. Nat. Geosci. 11, 594–598 (2018).


Moteki, N. et al. Anthropogenic iron oxide aerosols improve atmospheric heating. Nat. Commun. eight, 15329 (2017).


Shelley, R. U., Touchdown, W. M., Ussher, S. J., Planquette, H. & Sarthou, G. Regional developments within the fractional solubility of Fe and different metals from North Atlantic aerosols (GEOTRACES cruises GA01 and GA03) following a two-stage leach. Biogeosciences 15, 2271–2288 (2018).


Buck, C. S., Touchdown, W. M., Resing, J. A. & Lebon, G. T. Aerosol iron and aluminum solubility within the northwest Pacific Ocean: outcomes from the 2002 IOC cruise. Geochemistry Geophys. Geosystems 7, 21 (2006).


Conway, T. M., Rosenberg, A. D., Adkins, J. F. & John, S. G. A brand new methodology for exact willpower of iron, zinc and cadmium secure isotope ratios in seawater by double-spike mass spectrometry. Anal. Chim. Acta 793, 44–52 (2013).


Sakata, Okay. et al. Customized-made PTFE filters for ultra-clean size-fractionated aerosol sampling for hint metals. Mar. Chem. 206, 100–108 (2018).


Likelihood, R., Jickells, T. D. & Baker, A. R. Atmospheric hint steel concentrations, solubility and deposition fluxes in distant marine air over the south-east Atlantic. Mar. Chem. 177, 45–56 (2015).

Supply hyperlink

wordpress autoblog

amazon autoblog

affiliate autoblog

wordpress web site

web site growth

Show More

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *