Chemistry

World Fe–O isotope correlation reveals magmatic origin of Kiruna-type apatite-iron-oxide ores


1.

Jonsson, E. et al. Magmatic origin of big ‘Kiruna-type’ apatite-iron-oxide ores in Central Sweden. Sci. Rep. three, 1644 (2013).

2.

Williams, P. & Barton, M. Iron oxide copper-gold deposits: Geology, space-time distribution, and doable modes of origin. Econ. Geol. 100th Anniversary Quantity, 371–405 (2005).

three.

Geijer, P. I
gneous rocks and iron ores of Kiirunavaara, Luossavaara and Tuollavaara. Scientific and sensible researches in Lapland organized by the Luossavaara-Kiirunavaara Aktiebolag, Geology of the Kiruna district 2, Stockholm, 278 pp (1910).

four.

Hitzman, M. W., Oreskes, N. & Einaudi, M. T. Geological traits and tectonic setting of proterozoic iron-oxide (Cu-U-Au-Ree) deposits. Precambrian Res. 58, 241–287 (1992).

5.

Nyström, J. O., Billström, Ok., Henríquez, F., Fallick, A. E. & Naslund, H. R. Oxygen isotope composition of magnetite in iron ores of the Kiruna sort in Chile and Sweden. GFF 130, 177–188 (2008).

6.

Weihed, P. et al. Precambrian geodynamics and ore formation: The Fennoscandian Protect. Ore Geol. Rev. 27, 273–322 (2005).

7.

Oyarzún, J. & Frutos, J. Tectonic and petrological body of the Cretaceous iron deposits of north Chile. Min. Geol. 34, 21–31 (1984).

eight.

Lyons, J. I. Volcanogenic iron oxide deposits, Cerro de Mercado and neighborhood, Durango, Mexico. Econ. Geol. 83, 1886–1906 (1988).

9.

Naslund, H. R., Henríquez, F., Nyström, J. O., Vivallo, W. & Dobbs, F. M. Magmatic iron ores and related mineralisation: Examples from the Chilean Excessive Andes and Coastal Cordillerain. In Hydrothermal Iron Oxide Copper-Gold and Associated Deposits : A World Perspective (ed. Porter, T. M.) 207–226 (2002).

10.

Helvaci, C. Apatite-rich iron deposits of the Avnik (Bingol) area, southeastern Turkey. Econ. Geol. 79, 354–371 (1984).

11.

Mücke, A. & Younessi, R. Magnetite-apatite deposits (Kiruna-type) alongside the Sanandaj-Sirjan zone and within the Bafq space, Iran, related to ultramafic and calcalkaline rocks and carbonatites. Mineral. Petrol. 50, 219–244 (1994).

12.

Zhang, Z. et al. Spatio-temporal distribution and tectonic settings of the foremost iron deposits in China: an summary. Ore Geol. Rev. 57, 247–263 (2014).

13.

Search engine marketing, J., Choi, S. G., Kim, D. W., Park, J. W. & Oh, C. W. A brand new genetic mannequin for the Triassic Yangyang iron-oxide-apatite deposit, South Korea: constraints from in situ U-Pb and hint component analyses of accent minerals. Ore Geol. Rev. 70, 110–135 (2015).

14.

Bilenker, L. D. et al. Fe-O steady isotope pairs elucidate a high-temperature origin of Chilean iron oxide-apatite deposits. Geochim. Cosmochim. Acta 177, 94–104 (2016).

15.

Hofstra, A. H. et al. Mineral thermometry and fluid inclusion research of the pea ridge iron oxide-apatite-rare earth component deposit, Mesoproterozoic St. Francois Mountains Terrane, Southeast Missouri, USA. Econ. Geol. 111, 1985–2016 (2016).

16.

Montreuil, J. F., Corriveau, L., Potter, E. G. & De Toni, A. F. On the connection between alteration facies and metallic endowment of iron oxide-alkali-altered methods, Southern Nice Bear Magmatic Zone (Canada). Econ. Geol. 111, 2139–2168 (2016).

17.

Tornos, F., Velasco, F. & Hanchar, J. M. Iron-rich melts, magmatic magnetite, and superheated hydrothermal methods: the El Laco deposit, Chile. Geology 44, 427–430 (2016).

18.

Tornos, F., Velasco, F. & Hanchar, J. M. The magmatic to magmatic-hydrothermal evolution of the El Laco Deposit (Chile) and its implications for the genesis of magnetite-apatite deposits. Econ. Geol. 112, 1595–1628 (2017).

19.

Westhues, A., Hanchar, J. M., Whitehouse, M. J. & Martinsson, O. New constraints on the timing of host-rock emplacement, hydrothermal alteration, and iron oxide-apatite mineralization within the Kiruna District, Norrbotten, Sweden. Econ. Geol. 111, 1595–1618 (2016).

20.

Westhues, A. et al. Tracing the fluid evolution of the Kiruna iron oxide apatite deposits utilizing zircon, monazite, and entire rock hint parts and isotopic research. Chem. Geol. 466, 303–322 (2017).

21.

Westhues, A., Hanchar, J. M., LeMessurier, M. J. & Whitehouse, M. J. Proof for hydrothermal alteration and supply areas for the Kiruna iron oxide-apatite ore (northern Sweden) from zircon Hf and O isotopes. Geology 45, 571–574 (2017).

22.

Broughm, S. G., Hanchar, J. M., Tornos, F., Westhues, A. & Attersley, S. Mineral chemistry of magnetite from magnetite-apatite mineralization and their host rocks: examples from Kiruna, Sweden, and El Laco, Chile. Miner. Depos. 52, 1223–1244 (2017).

23.

He, X. F., Santosh, M., Tsunogae, T. & Malaviarachchi, S. P. Ok. Magnetite-apatite deposit from Sri Lanka: implications on Kiruna-type mineralization related to ultramafic intrusion and mantle metasomatism. Am. Mineral. 103, 26–38 (2018).

24.

Frietsch, R. On the magmatic origin of iron ores of the Kiruna sort. Econ. Geol. 73, 478–485 (1978).

25.

Parak, T. Kiruna iron ores should not intrusive-magmatic ores of the kiruna sort. Econ. Geol. 70, 1242–1258 (1975).

26.

Nyström, J. O., Henriquez, F. Magmatic options of iron ores of the Kiruna sort in Chile and Sweden: ore textures and magnetite geochemistry. Econ. Geol. 89, 820–839 (1994).

27.

Sillitoe, R. H. & Burrows, D. R. New area proof bearing on the origin of the El Laco magnetite deposit, Northern Chile. Econ. Geol. 97, 1101–1109 (2002).

28.

Smith, M. P., Storey, C. D., Jeffries, T. E. & Ryan, C. In situ U-Pb and hint component evaluation of accent minerals within the Kiruna District, Norrbotten, Sweden: New constraints on the timing and origin of mineralization. J. Petrol. 50, 2063–2094 (2009).

29.

Smith, M. P., Gleeson, S. A. & Yardley, B. W. D. Hydrothermal fluid evolution and metallic transport within the Kiruna District, Sweden: contrasting metallic behaviour in aqueous and aqueous-carbonic brines. Geochim. Cosmochim. Acta 102, 89–112 (2013).

30.

Dare, S. A. S., Barnes, S. J. & Beaudoin, G. Did the huge magnetite “lava flows” of El Laco (Chile) type by magmatic or hydrothermal processes? New constraints from magnetite composition by LA-ICP-MS. Miner. Depos. 50, 607–617 (2014).

31.

Knipping, J. L. et al. Big Kiruna-type deposits type by environment friendly flotation of magmatic magnetite suspensions. Geology 43, 591–594 (2015).

32.

Rhodes, A. L. & Oreskes, N. Oxygen isotope composition of magnetite depositsat El Laco, Chile: Proof of formation from isotopically heavy fluids. In: Geology and Ore Deposits of the Central Andes, Brian J. Skinner, ed., Society of Financial Geologists Particular Publication 7, 333–351 (1999).

33.

Naslund, H. R. The impact of oxygen fugacity on liquid immiscibility in iron- bearing silicate melts. Am. J. Sci. 283, 1034–1059 (1983).

34.

Lledo, H. I. & Jenkins, D. M. Experimental investigation of the higher thermal stability of Mg-rich actinolite; implications for kiruna-type iron deposits. J. Petrol. 49, 225–238 (2008).

35.

Lester, G. W., Clark, A. H., Kyser, T. Ok. & Naslund, H. R. Experiments on liquid immiscibility in silicate melts with H2O, P, S, F and Cl: implications for pure magmas. Contrib. Mineral. Petrol. 166, 329–349 (2013).

36.

Mungall, J. E. Immiscible silicate and Fe-P oxide melts preserved in unconsolidated tephra at El Laco volcano, Chile. Geology 46, 255–258 (2018).

37.

Hou, T. et al. Experimental research of liquid immiscibility within the Kiruna-type Vergenoeg iron–fluorine deposit, South Africa. Geochim. Cosmochim. Acta 203, 303–322 (2017).

38.

Hou, T. et al. Immiscible hydrous Fe-Ca-P soften and the origin of iron oxide-apatite ore deposits. Nat. Commun. 9, 1–eight (2018).

39.

Heimann, A., Beard, B. L. & Johnson, C. M. The position of risky exsolution and sub-solidus fluid/rock interactions in producing excessive 56Fe/54Fe ratios in siliceous igneous rocks. Geochim. Cosmochim. Acta 72, 4379–4396 (2008).

40.

Allen, R. L., Lundström, I., Ripa, M., Simeonov, A. & Christofferson, H. Facies evaluation of a 1.9 Ga, continental margin, back-arc, felsic caldera province with various Zn-Pb-Ag-(Cu-Au) sulfide and Fe oxide deposits, Bergslagen Area, Sweden. Econ. Geol. 91, 979–1006 (1996).

41.

Jonsson, E., Harlov, D. E., Majka, J., Högdahl, Ok. & Persson-Nilsson, Ok. Fluorapatite-monazite-allanite relations within the Grängesberg apatite-iron oxide ore district, Bergslagen, Sweden. Am. Mineral. 101, 1769–1782 (2016).

42.

Mokhtari, M. A. A., Zadeh, G. H. & Emami, M. H. Genesis of iron-apatite ores in Posht-e-Badam Block (Central Iran) utilizing REE geochemistry. J. Earth Syst. Sci. 122, 795–807 (2013).

43.

Ramezani, J. & Tucker, R. D. The Saghand Area, Central Iran: U-Pb geochronology, petrogenesis and implications for Gondwana tectonics. Am. J. Sci. 303, 622–665 (2003).

44.

Barnes, J. D., Paulick, H., Sharp, Z. D., Bach, W. & Beaudoin, G. Secure isotope (δ18O, δD, δ37Cl) proof for a number of fluid histories in mid-Atlantic abyssal peridotites (ODP Leg 209). Lithos 110, 83–94 (2009).

45.

Wang, Y. et al. Iron isotope fractionation throughout skarn-type metallogeny: a case research of Xinqiao Cu-S-Fe-Au deposit within the Center-Decrease Yangtze valley. Ore Geol. Rev. 43, 194–202 (2011).

46.

Sossi, P. A., Foden, J. D. & Halverson, G. P. Redox-controlled iron isotope fractionation throughout magmatic differentiation: An instance from the Crimson Hill intrusion, S. Tasmania. Contrib. Mineral. Petrol. 164, 757–772 (2012).

47.

Dziony, W. et al. In-situ Fe isotope ratio dedication in Fe-Ti oxides and sulfides from drilled gabbros and basalt from the IODP Gap 1256D within the japanese equatorial Pacific. Chem. Geol. 363, 101–113 (2014).

48.

Childress, T. M., Simon, A. C., Day, W. C., Lundstrom, C. C. & Bindeman, I. N. Iron and oxygen isotope signatures of the Pea Ridge and Pilot Knob magnetite-apatite deposits, Southeast Missouri, USA. Econ. Geol. 111, 2033–2044 (2016).

49.

Valley, P. M., Hanchar, J. M. & Whitehouse, M. J. New insights on the evolution of the Lyon Mountain Granite and related Kiruna-type magnetite-apatite deposits, Adirondack Mountains, New York State. Geosphere 7, 357–389 (2011).

50.

H. P. Taylor. in Geochemistry of Hydrothermal Ore Deposits (ed. Barnes, H. L.) 109–142 (Holt, Rinehart and Winston Inc., New York, 1967).

51.

Bilenker, L. D., Van Tongeren, J. A., Lundstrom, C. C. & Simon, A. C. Iron isotopic evolution throughout fractional crystallization of the uppermost Bushveld Advanced layered mafic intrusion. Geochem. Geophys. 18, 956–972 (2017).

52.

Aupers Ok. Gangue mineralogy and deportment of deleterious parts within the iron ore of the Kiirunavaara deposit, Sweden, M.Sc. thesis, TU Bergakademie Freiberg, 167 p (2014).

53.

Grey, W. Genesis of the Kiirunavaara nodular porphyry and Kiruna-type iron deposits: clues from titanite geothermometry and magnetite hint component compositions. Bachelor thesis, College of St. Andrews, 54 p (2016).

54.

Dauphas, N. et al. Magma redox and structural controls on iron isotope variations in Earth’s mantle and crust. Earth Planet. Sci. Lett. 398, 127–140 (2014).

55.

Telus, M. et al. Iron, zinc, magnesium and uranium isotopic fractionation throughout continental crust differentiation: The story from migmatites, granitoids, and pegmatites. Geochim. Cosmochim. Acta 97, 247–265 (2012).

56.

Kyser, T. Ok., Lesher, C. E. & Walker, D. The results of liquid immiscibility and thermal diffusion on oxygen isotopes in silicate liquids. Contrib. Mineral. Petrol. 133, 373–381 (1998).

57.

Taylor, H. P. The oxygen isotope geochemistry of igneous rocks. Contrib. Mineral. Petrol. 19, 1–71 (1968).

58.

Bindeman, I. Oxygen isotopes in mantle and crustal magmas as revealed by single crystal evaluation. Rev. Mineral. Geochem. 69, 445–478 (2008).

59.

Huberty, J. M. et al. Crystal orientation results in δ18O for magnetite and hematite by SIMS. Chem. Geol. 276, 269–283 (2010).

60.

Donoghue, E. et al. Low-temperature hydrothermal alteration of intra-caldera tuffs, Miocene Tejeda caldera, Gran Canaria, Canary Islands. J. Volcanol. Geotherm. Res. 176, 551–564 (2008).

61.

Donoghue, E., Troll, V. R. & Harris, C. Fluid-rock interplay within the miocene, post-caldera, Tejeda Intrusive Advanced, Gran Canaria (Canary Islands): insights from mineralogy, and O- and H-isotope geochemistry. J. Petrol. 51, 2149–2176 (2010).

62.

Henriquez, F. & Nyström, J. O. Magnetite bombs at El Laco volcano, Chile. GFF 120, 269–271 (1998).

63.

O’Driscoll, B., Stevenson, C. T. E. & Troll, V. R. Mineral lamination improvement in layered gabbros of the british palaeogene igneous province: a mixed anisotropy of magnetic susceptibility, quantitative textural and mineral chemistry research. J. Petrol. 49, 1187–1221 (2008).

64.

Millet, M. A., Baker, J. A. & Payne, C. E. Extremely-precise steady Fe isotope measurements by excessive decision multiple-collector inductively coupled plasma mass spectrometry with a Fe-57-Fe-58 double spike. Chem. Geol. 304, 18–25 (2012).

65.

Ingri, J. et al. Iron isotope fractionation in river colloidal matter. Earth Planet. Sci. Lett. 245, 792–798 (2006).

66.

Borrok, D. et al. Separation of copper, iron, and zinc from complicated aqueous options for isotopic measurement. Chem. Geol. 242, 400–414 (2007).

67.

Harris, C. & Vogeli, J. Oxygen isotope composition of garnet within the Peninsula Granite, Cape Granite Suite, South Africa: constraints on melting and emplacement mechanisms. S. Afr. J. Geol. 113, 401–412 (2010).

68.

Harris, C., Smith, S. H. & le Roex, A. P. Oxygen isotope composition of phenocrysts from Tristan da Cunha and Gough Island lavas: variation with fractional crystallization and proof for assimilation. Contrib. Mineral. Petrol. 138, 164–175 (2000).

69.

Anbar, A. D. Iron steady isotopes: past biosignatures. Earth Planet. Sci. Lett. 217, 223–236 (2004).

70.

Severmann, S. & Anbar, A. D. Reconstructing paleoredox situations by way of a multitracer method: the important thing to the previous is the current. Parts 5, 359–364 (2009).


Supply hyperlink
asubhan

wordpress autoblog

amazon autoblog

affiliate autoblog

wordpress web site

web site improvement

Show More

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Close